Optimal Design for Injection Molding Process Using Design of Experiments and Finite Element Analysis

2000 ◽  
Author(s):  
K. Park ◽  
J. H. Ahn ◽  
S. R. Choi

Abstract The present work concerns optimal design for the injection molding process of a deflection yoke (coil separator). The optimal design for the injection molding process is developed using design of experiments and finite element analysis. Two design of experiments approaches are applied such as: the design of experiment for mold design and the design of experiments for determination of process parameters. Finite element analyses have been carried out as a design of experiments for mold design: runner system and cooling channel. In order to determine optimal process parameters, experiments have been performed for various process conditions with the design of experiments scheduling.

2013 ◽  
Vol 37 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Kingsun Lee ◽  
Jui-Chang Lin

The unibody of LED (light-emitting diodes) lampshades is fabricated by injection mold; the forming technique is complicated, especially for multi-cavity molds. This study applies a finite element analysis to explore the influences of the shrinkage of LED lampshades. The effect of selected injection parameters and their levels on shrinkage size, and the subsequent design of experiments were accomplished using the Taguchi method. The results were confirmed by experiments, which indicated that the selected injection parameters effectively reduce the shrinkage. The error between optimal estimated value and verified value is within 3.82%.


2021 ◽  
Author(s):  
Huiwen Mao ◽  
Youmin Wang ◽  
Deyu Yang

Abstract Numerical simulation of the injection molding process of the outer panel of the automotive plastic rear door and mold design is presented here. CATIA is used to design the original automotive steel structure. In order to efficiently design the panels; finite element analysis is used to verify whether the designed parts meet the mechanical properties requirements such as light weight, low fuel consumption, short production cycle, strong modeling design, high corrosion resistance and good recovery. To simulate the injection molding process, CAE software such as ANSYS and HYPERWORKS are used to analyze the back door of the selected material. After the numerical analysis, suitable material is selected, so that the modal and thermodynamic properties of the product could be satisfied as well as improved. In this paper, UG is used to design the convex and concave mold for the injection molding of the automobile’s plastic back door panel. Combined with the characteristics of the parts and the design requirements of the injection mold, the multi-scheme design of the pouring and cooling system is carried out. By comparing the effects of different gating and cooling systems on injection molding, the best gating and cooling system is selected.


2013 ◽  
Vol 690-693 ◽  
pp. 2772-2775
Author(s):  
Jian Wen Tang

In the injection molding process, CAE technology is used for detailed analysis of the designing of injection mold gate location and number, this method can optimize the pouring system, and change the traditional method which improves the mold structure by mold testing, so the cost of mold design and manufacturing can be reduced.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1569
Author(s):  
Selim Mrzljak ◽  
Alexander Delp ◽  
André Schlink ◽  
Jan-Christoph Zarges ◽  
Daniel Hülsbusch ◽  
...  

Short glass fiber reinforced plastics (SGFRP) offer superior mechanical properties compared to polymers, while still also enabling almost unlimited geometric variations of components at large-scale production. PA6-GF30 represents one of the most used SGFRP for series components, but the impact of injection molding process parameters on the fatigue properties is still insufficiently investigated. In this study, various injection molding parameter configurations were investigated on PA6-GF30. To take the significant frequency dependency into account, tension–tension fatigue tests were performed using multiple amplitude tests, considering surface temperature-adjusted frequency to limit self-heating. The frequency adjustment leads to shorter testing durations as well as up to 20% higher lifetime under fatigue loading. A higher melt temperature and volume flow rate during injection molding lead to an increase of 16% regarding fatigue life. In situ Xray microtomography analysis revealed that this result was attributed to a stronger fiber alignment with larger fiber lengths in the flow direction. Using digital volume correlation, differences of up to 100% in local strain values at the same stress level for different injection molding process parameters were identified. The results prove that the injection molding parameters have a high influence on the fatigue properties and thus offer a large optimization potential, e.g., with regard to the component design.


2014 ◽  
Vol 1 (4) ◽  
pp. 256-265 ◽  
Author(s):  
Hong Seok Park ◽  
Trung Thanh Nguyen

Abstract Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using nondominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.


Sign in / Sign up

Export Citation Format

Share Document