Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness

2013 ◽  
Vol 246 ◽  
pp. 590-600 ◽  
Author(s):  
K.G. Allen ◽  
T.W. von Backström ◽  
D.G. Kröger
1991 ◽  
Vol 17 (2) ◽  
pp. 417-422 ◽  
Author(s):  
Michitaka Suzuki ◽  
Takatoshi Sakata ◽  
Syoji Nakamura ◽  
Mitsuaki Hirota ◽  
Toshio Oshima

Fuel ◽  
2006 ◽  
Vol 85 (10-11) ◽  
pp. 1439-1445 ◽  
Author(s):  
M KEYSER ◽  
M CONRADIE ◽  
M COERTZEN ◽  
J VANDYK

2021 ◽  
Vol 15 (1) ◽  
pp. 75-82
Author(s):  
Mingzi Xu ◽  
Changdong Sheng

The present work aims to develop a simple model for describing the particle size distribution (PSD) of residual fly ash from pulverized biomass combustion. The residual ash formation was modelled considering the mechanism of fragmentation and coalescence. The influences of particle shape and stochastic fragmentation on model description of the PSD of the fly ash were investigated. The results showed that biomass particle shape has a great influence on the model prediction, and a larger fragmentation number is required for cylindrical particles than that for spherical particles to get the same PSD of fly ash, and the fragment number of the particles increases with the shape factor increasing. For pulverized biomass with a wide size distribution, the model predicted ash PSD considering the stochastic fragmentation is very similar to that assuming uniform fragmentation. It implies that the simple model assuming uniform fragmentation is applicable for predicting fly ash size distribution in practical processes where biomass particles have a wide range of sizes. For the fuel with a narrower initial PSD, the stochastic fragmentation model generally predicts a coarser PSD of the residual ash than assuming uniform fragmentation. It means the stochastic fragmentation is of great influence to be considered for accurate description of ash formation from the fuel with a narrow PSD.


Author(s):  
Runjia Liu ◽  
Yong Zang ◽  
Rui Xiao

Abstract Detailed understanding the particle mixing and segregation dynamic is essential in successfully designing and reasonably operating multicomponent fluidized bed. In this work, a novel fluorescent tracer technique combining image processing method has been used to investigate the mixing and segregation behavior in a binary fluidized bed with wide size distributions. The particle number percentage in each layer for different gas velocities is obtained by an image processing method. Fluidization, mixing and segregation behavior has been discussed in terms of bed pressure drop, gas velocity and mixing index. Different types of binary particle systems, including the jetsam and the flotsam-rich system, are analyzed and compared. The mixing indexes at different minimum fluidization velocities are also analyzed and compared with other work. The results show that the theoretical minimum fluidization velocity calculated from the bed pressure drop cannot represent the whole fluidization for a wide size distribution binary particle system. The effect of a wide size distribution is an inflection point in the mixing index curve. There is also a dead region in the bottom of the bed that consists of particles with large size and a low degree of sphericity. The particles in the dead region are extraordinarily difficult to fluidize and should be considered in the design of fluidized beds in industrial applications.


2020 ◽  
Vol 219 ◽  
pp. 115584 ◽  
Author(s):  
Nicolin Govender ◽  
Paul W. Cleary ◽  
Mehran Kiani-Oshtorjani ◽  
Daniel N. Wilke ◽  
Chuan-Yu Wu ◽  
...  

2005 ◽  
Vol 44 (18) ◽  
pp. 7234-7241 ◽  
Author(s):  
Richard S. Todd ◽  
Paul A. Webley
Keyword(s):  

2007 ◽  
Vol 534-536 ◽  
pp. 1621-1624
Author(s):  
Yuto Amano ◽  
Takashi Itoh ◽  
Hoshiaki Terao ◽  
Naoyuki Kanetake

For precise property control of sintered products, it is important to know the powder characteristics, especially the packing density of the powder. In a previous work, we developed a packing simulation program that could make a packed bed of spherical particles having particle size distribution. In order to predict the packing density of the actual powder that consisted of nonspherical particles, we combined the packing simulation with a particle shape analysis. We investigated the influence of the particle size distribution of the powder on the packing density by executing the packing simulation based on particle size distributions of the actual milled chromium powders. In addition, the influence of the particle shape of the actual powder on the packing density was quantitatively analyzed. A prediction of the packing density of the milled powder was attempted with an analytical expression between the particle shape of the powder and the packing simulation. The predicted packing densities were in good agreement with the actual data.


Sign in / Sign up

Export Citation Format

Share Document