Numerical simulation of an internal flow field in a uniflow cyclone separator

2015 ◽  
Vol 274 ◽  
pp. 135-145 ◽  
Author(s):  
Jeongseog Oh ◽  
Sangil Choi ◽  
Jeonggeun Kim
Author(s):  
Yigang Luan ◽  
Lianfeng Yang ◽  
Tao Sun

Axial flow cyclone separator with guide blade has been widely used, due to its low resistance, huge gas processing and small volume. Although its structure is simple, three-dimension strong rotating turbulent flow forms which involves many complex interactions such as dual-phase separation, adsorption and electrostatic interference. This paper is focused on studying the resistance performance of the axial flow cyclone separator. Numerical simulation methods are carried out to acquire the internal flow field characteristics under different operating pressure and temperature conditions. The result shows that the pressure drop decreases under the same operating pressure, as the operating temperature increases. When the operating temperature is the same, the higher operating pressure enhances the value of the pressure drop. Velocity distribution, pressure contours and turbulent viscosity contours have been presented, to analyze the characteristics of the internal airflow, so as to help optimize the design. Experiments are intended to verify the results of numerical simulation and explore the internal flow field of the cyclone separator further. The cyclone separator has 8 rotary blades which are split into 8 parts, namely one blade is 45° in the tangential direction. 0° and 22.5° are chosen in the experiment. The dimensionless pressure distribution is shown. A comparison of the CFD results and the experimental results is made to prove that the numerical simulation methods are correct and accurate. The curve of the numerical simulation results is very close to that of the experimental results with the similar trend. It is concluded that the methods can predict the internal flow field characteristics of the axial flow cyclone separator.


Author(s):  
Yigang Luan ◽  
Pengfei Liu ◽  
Haiou Sun ◽  
Yulin Deng

Flow field inside tangential cyclone separator is a kind of complex three-dimensional rotation turbulent flow. To optimize the flow field structure and shorten the cycle of research and development, it is essential to find an appropriate calculation method to predict the flow field inside cyclone separators. In the article, FLUENT software is employed to obtain the internal flow field of tangential inlet cyclone separator by adopting different calculation models and different numerical simulation scheme. Also the simulation result was compared with that of existing experiment data to find a reasonable solution for the simulation of the flow field characteristics inside the cyclone. After the examination to the rationality of the different numerical simulation method, and the comparative analysis in the main flow field parameters of the simulated results which is the most reasonable combination, the flow characteristics of internal flow field of tangential inlet cyclone separator was obtained. The results show that: when the grid number of calculation domain reach 860000, it can cater to the calculation conditions of flow field, and the simulation results can agree with the experimental data better and will hardly change with the grid number; On the basis of standard k-ε model, the numerical simulation scheme was formulated by the orthogonal experiment method, through the comparison of results, the best combinations are 2 and 11; Applying the optimized combination to RNG k-ε model, Realizable k-ε model and RSM model and comparing simulation results with the existing one show that RSM was the ideal model used in simulation; With the change of the flow rate came a resistance characteristic curve of cyclone separator. The comparison between it and the predicted results of existing empirical formula of resistance characteristic drew the numerical simulation result, which is closest to Dirgo empirical formula; the first and second order upwind form have certain influence on the numerical simulation results, but the second one is more accurate in terms of simulating and predicting the parameters distribution inside flow field. This research result has certain reference value for cyclone separator design and performance optimization.


2016 ◽  
Vol 88 (3) ◽  
pp. 237-253 ◽  
Author(s):  
Nicholus Tayari Akankwasa ◽  
Huiting Lin ◽  
Yuze Zhang ◽  
Jun Wang

In order to regulate turbulence strength and determine airflow characteristics in a new dual-feed rotor spinning unit, the internal flow field is investigated. A computational fluid dynamics technique is employed to numerically study the three-dimensional model of the internal airflow in the new design. The effects of air velocity variation on turbulence strength, negative pressure, Re, and wall pressure distribution are investigated based on simulation data and previous studies. The results show that the turbulence strength and Re increased with increase in inlet air velocity. Pressure profiles inside the rotor varied significantly with positive pressure observed at the channel exits. Minimal inlet velocity maintains the flow field in the rotor interior below 100 m/s, which gives the ideal turbulence required to minimize yarn quality deterioration. The dual-feed rotor spinning unit showed more orderly streamline patterns with fewer vortices compared to the conventional one. The numerical simulation can provide insights on airflow studies and some guidelines for future prototyping and experiments to further improve the new design.


2012 ◽  
Vol 455-456 ◽  
pp. 1002-1008 ◽  
Author(s):  
Yi Ming Xu ◽  
Shi Ming Xu

Numerical simulation is used for researching the transient characteristic and internal characteristic of the reactor coolant pump under station blackout accident. The simulation method has been presented by analyzing difference scheme for governing equations. The analytical model of reactor coolant pump flow field has been established by analyzing adequately the influence of varying rotation speed to the pump external characteristic. Finally, the pump internal flow characteristic is exposed.


2015 ◽  
Vol 85 (15) ◽  
pp. 1590-1601 ◽  
Author(s):  
Liang Chen ◽  
Zhi-hua Feng ◽  
Teng-zhong Dong ◽  
Wei-hua Wang ◽  
Shuai Liu

Sign in / Sign up

Export Citation Format

Share Document