Numerical Simulation and Experiment Study on Internal Flow Field in Impeller of Torque Converter

Author(s):  
Ying Yu ◽  
Qingliu Yang ◽  
Gang Wang
2012 ◽  
Vol 468-471 ◽  
pp. 2255-2258
Author(s):  
Feng Gao ◽  
Wei Yan Zhong

The full flow field model of a widely used multi-blade centrifugal was built, using the CFD method, the steady and unsteady numerical simulation of the inner flow in the fan at different working conditions are presented. The numerical simulation results were validated by contrasting to the experiment results. The results displayed the characteristics of the velocity field, pressure field and pressure fluctuate in the centrifugal fan. The results can provide basis for optimizing the fan design and the internal flow, and have important value of engineering applications in the increase of the overall performance in operation.


2011 ◽  
Vol 347-353 ◽  
pp. 417-421
Author(s):  
Xi Chao Xu ◽  
Bai Jing Qiu ◽  
Bin Deng ◽  
Fang Wen Jia

Aimed at investigating the design method and test method of jet-mixing apparatus, numerical simulation and experiment research were both used to investigate the internal flow field of jet-mixing apparatus in this article. Numerical simulation scheme for interior flow field of jet-mixing apparatus was established, CFD software Fluent was used to investigate in concentration field of jet-mixing apparatus. The concept of IOS was brought forward to evaluate the homogeneity degree of pesticide and water. Investigation both carried on area ratio effect on the mix homogeneity of the jet-mixing apparatus and the distribution of pesticide concentration in the axial and radial of mixing tube.


2013 ◽  
Vol 427-429 ◽  
pp. 29-32
Author(s):  
Jin Gang Liu ◽  
Le Xiong ◽  
Yuan Qiang Tan

According to the issue of CVT torque converter internal flow field such as the complexity and not easy to calculate, the channel model of torque converter is established by UG, the grid of channel model is generated by GAMBIT, the internal flow field of torque converter is simulated based on FLUENT while the pressure and velocity distribution of flow field are calculated under three different conditions. The results show that analyzing the flow field of torque converter by FLUENT has certain guiding significance for the design and optimization of torque converter.


2011 ◽  
Vol 308-310 ◽  
pp. 189-192
Author(s):  
Long Xing Chen ◽  
Wen Qi Ma ◽  
He Chun Yu ◽  
Hai Yan Liu ◽  
Hong Wang Du

The aerostatic circular thrust bearing was taken as a study subject. The numerical simulation method was used to calculate the flow passage. Meanwhile, the single-point testing method was used to test the pressure distribution. The simulation and experiment measurement results were compared and analyzed. The results show that: The single-point testing method is effective to capture the change of flow characteristics. The overall results of simulation and testing coincide with each other well. In the range of cone cavity, the flow pattern for the gas is turbulent flow, and the flow field should be divided into different zones for simulation.


2016 ◽  
Vol 88 (3) ◽  
pp. 237-253 ◽  
Author(s):  
Nicholus Tayari Akankwasa ◽  
Huiting Lin ◽  
Yuze Zhang ◽  
Jun Wang

In order to regulate turbulence strength and determine airflow characteristics in a new dual-feed rotor spinning unit, the internal flow field is investigated. A computational fluid dynamics technique is employed to numerically study the three-dimensional model of the internal airflow in the new design. The effects of air velocity variation on turbulence strength, negative pressure, Re, and wall pressure distribution are investigated based on simulation data and previous studies. The results show that the turbulence strength and Re increased with increase in inlet air velocity. Pressure profiles inside the rotor varied significantly with positive pressure observed at the channel exits. Minimal inlet velocity maintains the flow field in the rotor interior below 100 m/s, which gives the ideal turbulence required to minimize yarn quality deterioration. The dual-feed rotor spinning unit showed more orderly streamline patterns with fewer vortices compared to the conventional one. The numerical simulation can provide insights on airflow studies and some guidelines for future prototyping and experiments to further improve the new design.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jiawei Wang ◽  
Dong Tang ◽  
Songhua Wang ◽  
Zehong Zhu ◽  
Nan Li ◽  
...  

Structure and principle of the new leakage current particulate matter (PM) sensor are introduced and further study is performed on the PM sensor with the combination of numerical simulation and bench test. High voltage electrode, conductive shell, and heaters are all built-in. Based on the principle of Venturi tube and maze structure design, this sensor can detect transient PM concentrations. Internal flow field of the sensor and distribution condition of PM inside the sensor are analyzed through gas-solid two-phase flow numerical simulation. The experiment was also carried out on the whole sensor system (including mechanical and electronic circuit part) and the output signals were analyzed. The results of simulation and experiment reveal the possibility of PM concentration (mass) detection by the sensor.


Sign in / Sign up

Export Citation Format

Share Document