A high-productivity process for mass-producing Fe3O4 nanoparticles by co-precipitation in a rotating packed bed

2022 ◽  
Vol 395 ◽  
pp. 369-376
Author(s):  
Chia-Chang Lin ◽  
Yu-Po Lai ◽  
Kuan-Yi Wu
2012 ◽  
Vol 203 ◽  
pp. 88-94 ◽  
Author(s):  
Chia-Chang Lin ◽  
Jui-Min Ho ◽  
Hui-Ling Hsieh

2020 ◽  
Vol 20 (16) ◽  
pp. 1918-1926
Author(s):  
Fahimeh H. Beigi ◽  
Soheil Fatahian ◽  
Sogand Shahbazi-Gahrouei ◽  
Daryoush Shahbazi-Gahrouei ◽  
Amin Farzadniya

Objective: Polydopamine coated iron oxide nanoparticles (Fe3O4@PDA NPs) were synthesized, characterized, and their MR imaging contrast agents and photothermal potency were evaluated on melanoma (B16-F10 and A-375) cells and normal skin cells. To this end, MTT assay, Fe concentration, and MR imaging of both coated and uncoated NPs were assessed in C57BL/6 mice. Methods: Fe3O4 nanoparticles were synthesized using co-precipitation, and coated with polydopamine. The cytotoxicity of Fe3O4 and Fe3O4@PDA NPs on melanoma cells, with different concentrations, were obtained using MTT assay. MR images and Fe concentrations of nanoprobe and nanoparticles were evaluated under in vivo conditions. Results: Findings indicated that uncoated Fe3O4 showed the highest toxicity in animal (B16-F10) cells at 450μg/ml after 72h, while the highest toxicity in human (A-375) cells were observed at 350μg/ml. These nanoparticles did not reveal any cytotoxicity to normal skin cells, despite having some toxicity features in A-375 cells. MR image signals in the tumor were low compared with other tissues. The iron concentration in the tumor was higher than that of other organs. Conclusion: It is concluded that the cytotoxicity of Fe3O4@PDA was found to be significantly lower than uncoated nanoparticles (p <0.001), which allows some positive effects on reducing toxicity. The prepared nanoprobe may be used as a contrast agent in MR imaging.


Sign in / Sign up

Export Citation Format

Share Document