Assessment of Ploy Dopamine Coated Fe3O4 Nanoparticles for Melanoma (B16-F10 and A-375) Cells Detection

2020 ◽  
Vol 20 (16) ◽  
pp. 1918-1926
Author(s):  
Fahimeh H. Beigi ◽  
Soheil Fatahian ◽  
Sogand Shahbazi-Gahrouei ◽  
Daryoush Shahbazi-Gahrouei ◽  
Amin Farzadniya

Objective: Polydopamine coated iron oxide nanoparticles (Fe3O4@PDA NPs) were synthesized, characterized, and their MR imaging contrast agents and photothermal potency were evaluated on melanoma (B16-F10 and A-375) cells and normal skin cells. To this end, MTT assay, Fe concentration, and MR imaging of both coated and uncoated NPs were assessed in C57BL/6 mice. Methods: Fe3O4 nanoparticles were synthesized using co-precipitation, and coated with polydopamine. The cytotoxicity of Fe3O4 and Fe3O4@PDA NPs on melanoma cells, with different concentrations, were obtained using MTT assay. MR images and Fe concentrations of nanoprobe and nanoparticles were evaluated under in vivo conditions. Results: Findings indicated that uncoated Fe3O4 showed the highest toxicity in animal (B16-F10) cells at 450μg/ml after 72h, while the highest toxicity in human (A-375) cells were observed at 350μg/ml. These nanoparticles did not reveal any cytotoxicity to normal skin cells, despite having some toxicity features in A-375 cells. MR image signals in the tumor were low compared with other tissues. The iron concentration in the tumor was higher than that of other organs. Conclusion: It is concluded that the cytotoxicity of Fe3O4@PDA was found to be significantly lower than uncoated nanoparticles (p <0.001), which allows some positive effects on reducing toxicity. The prepared nanoprobe may be used as a contrast agent in MR imaging.

2017 ◽  
Vol 9 (21) ◽  
pp. 3099-3104 ◽  
Author(s):  
Dong Li ◽  
Minghui Hua ◽  
Kun Fang ◽  
Rong Liang

Bovine serum albumin-Fe3O4 nanoparticles with undoubted biosafety and robust dual-modal T1 and T2 MR imaging ability were fabricated using a biomineralization approach in a facile way under mild conditions for in vivo MR imaging.


2020 ◽  
Vol 8 (15) ◽  
pp. 3087-3091
Author(s):  
Wei Liu ◽  
Guang Deng ◽  
Danli Wang ◽  
Ming Chen ◽  
Zhiguo Zhou ◽  
...  

Monodispersed hollow Fe3O4 nanoparticles with the diameters of 7 and 10 nm were prepared via a high-temperature pyrolysis method and the Kirkendall effect by regulating the ratio of oleylamine to oleic acid.


2018 ◽  
Vol 68 (12) ◽  
pp. 2747-2751
Author(s):  
Marioara Nicula ◽  
Nicolae Pacala ◽  
Lavinia Stef ◽  
Ioan Pet ◽  
Dorel Dronca ◽  
...  

Living organisms take nutrients from the environment, and together with them, substances with toxic potential � such as heavy metals. Lead is one common metal pollutant especially in aquatic environment, from where the fish can be intoxicated very easily. Bioavailability, distribution, toxic action, synergistic and antagonistic effects are characteristics which can alter the fish health. Our experimental study followed the effects of lead overload in water on iron distribution, in different tissues sample Carassius gibelio Bloch fish. We performed the experiment in four different fish groups: control C; lead � Pb (administration of lead in water 0.075mg/mL of water, as Pb(NO3)2 x � H2O); lead (the same dose) and 2% of freeze-dry garlic incorporated into fishes� food � Pb+garlic; lead (the same dose) and 2% chlorella incorporated into fishes� food � Pb+chlorella, for 21 consecutive days. The iron concentration was analysed with AAS (Atomic Absorption Spectroscopy) from gills, muscle, skin (and scales), intestine, liver, heart, brain, ovary, testicles, and kidney. The obtained data presented a significantly decrease of iron content in all tested tissue samples that demonstrated, alteration of iron homeostasis, explained by a strong antagonistic effect of lead on iron. Our experiment showed that biologic active principles from garlic and chlorella act like natural protectors, and potentiate the iron deficiency even in the case of lead overload in aquatic environment, for fish.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


Author(s):  
Junchao Qian ◽  
Xiang Yu ◽  
Bingbing Li ◽  
Zhenle Fei ◽  
Xiang Huang ◽  
...  

Background:: It was known that the response of tumor cells to radiation is closely related to tissue oxygen level and fractionated radiotherapy allows reoxygenation of hypoxic tumor cells. Non-invasive mapping of tissue oxygen level may hold great importance in clinic. Objective: The aim of this study is to evaluate the role of oxygen-enhanced MR imaging in the detection of tissue oxygen levels between fractionated radiotherapy. Methods: A cohort of 10 patients with brain metastasis was recruited. Quantitative oxygen enhanced MR imaging was performed prior to, 30 minutes and 22 hours after first fractionated radiotherapy. Results: The ΔR1 (the difference of longitudinal relaxivity between 100% oxygen breathing and air breathing) increased in the ipsilateral tumor site and normal tissue by 242% and 152%, respectively, 30 minutes after first fractionated radiation compared to pre-radiation levels. Significant recovery of ΔR1 in the contralateral normal tissue (p < 0.05) was observed 22 hours compared to 30 minutes after radiation levels. Conclusion: R1-based oxygen-enhanced MR imaging may provide a sensitive endogenous marker for oxygen changes in the brain tissue between fractionated radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document