Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth

2010 ◽  
Vol 180 (3-4) ◽  
pp. 227-236 ◽  
Author(s):  
Kent C. Condie ◽  
Richard C. Aster
2021 ◽  
Author(s):  
Jack Mulder ◽  
Peter A. Cawood

Table S1 (global compilation of monazite ages); Table S2 (compilation of whole rock geochemistry of monazite-bearing rocks); data sources for the zircon ages from the Himalayan orogen and Figure S1 (comparison of monazite and zircon age histograms and cross-correlation results based on the monazite dating method).<br>


2021 ◽  
Author(s):  
Jack Mulder ◽  
Peter A. Cawood

Table S1 (global compilation of monazite ages); Table S2 (compilation of whole rock geochemistry of monazite-bearing rocks); data sources for the zircon ages from the Himalayan orogen and Figure S1 (comparison of monazite and zircon age histograms and cross-correlation results based on the monazite dating method).<br>


Geology ◽  
2021 ◽  
Author(s):  
Jacob A. Mulder ◽  
Peter A. Cawood

Most recent models of continental growth are based on large global compilations of detrital zircon ages, which preserve a distinctly episodic record of crust formation over billion-year timescales. However, it remains unclear whether this uneven distribution of zircon ages reflects a true episodicity in the generation of continental crust through time or is an artifact of the selective preservation of crust isolated in the interior of collisional orogens. We address this issue by analyzing a new global compilation of monazite ages (n &gt;100,000), which is comparable in size, temporal resolution, and spatial distribution to the zircon continental growth record and unambiguously records collisional orogenesis. We demonstrate that the global monazite and zircon age distributions are strongly correlated throughout most of Earth history, implying a link between collisional orogenesis and the preserved record of continental growth. Our findings support the interpretation that the continental crust provides a preservational, rather than generational, archive of crustal growth.


1999 ◽  
Vol 79 (3) ◽  
pp. 161-168 ◽  
Author(s):  
David Roberts ◽  
August L. Nissen ◽  
Nicholas Walker
Keyword(s):  

2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


Author(s):  
A. Graham Leslie ◽  
Allen P. Nutman

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Leslie, A. G., & Nutman, A. P. (2000). Episodic tectono-thermal activity in the southern part of the East Greenland Caledonides. Geology of Greenland Survey Bulletin, 186, 42-49. https://doi.org/10.34194/ggub.v186.5214 _______________ Isotopic data from the Renland augen granites of the Scoresby Sund region (Figs 1, 2) provided some of the first convincing support for relicts of potentially Grenvillian tectono-thermal activity within the East Greenland Caledonides. In Renland, Chadwick (1975) showed the presence of major bodies of augen granite (Fig. 2) interpreted by Steiger et al. (1979), on the basis of Rb–Sr whole rock and U–Pb zircon age determinations, to have been emplaced about 1000 Ma ago.


1974 ◽  
Vol 85 (12) ◽  
pp. 1913 ◽  
Author(s):  
JOHN J. W. ROGERS ◽  
B. C. BURCHFIEL ◽  
E. W. ABBOTT ◽  
J. K. ANEPOHL ◽  
A. H. EWING ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document