collisional orogenesis
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

Geology ◽  
2021 ◽  
Author(s):  
Jacob A. Mulder ◽  
Peter A. Cawood

Most recent models of continental growth are based on large global compilations of detrital zircon ages, which preserve a distinctly episodic record of crust formation over billion-year timescales. However, it remains unclear whether this uneven distribution of zircon ages reflects a true episodicity in the generation of continental crust through time or is an artifact of the selective preservation of crust isolated in the interior of collisional orogens. We address this issue by analyzing a new global compilation of monazite ages (n >100,000), which is comparable in size, temporal resolution, and spatial distribution to the zircon continental growth record and unambiguously records collisional orogenesis. We demonstrate that the global monazite and zircon age distributions are strongly correlated throughout most of Earth history, implying a link between collisional orogenesis and the preserved record of continental growth. Our findings support the interpretation that the continental crust provides a preservational, rather than generational, archive of crustal growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dillon A. Brown ◽  
Laura J. Morrissey ◽  
John W. Goodge ◽  
Martin Hand

AbstractThe cratonic elements of proto-Australia, East Antarctica, and Laurentia constitute the nucleus of the Palaeo-Mesoproterozoic supercontinent Nuna, with the eastern margin of the Mawson Continent (South Australia and East Antarctica) positioned adjacent to the western margin of Laurentia. Such reconstructions of Nuna fundamentally rely on palaeomagnetic and geological evidence. In the geological record, eclogite-facies rocks are irrefutable indicators of subduction and collisional orogenesis, yet occurrences of eclogites in the ancient Earth (> 1.5 Ga) are rare. Models for Palaeoproterozoic amalgamation between Australia, East Antarctica, and Laurentia are based in part on an interpretation that eclogite-facies metamorphism and, therefore, collisional orogenesis, occurred in the Nimrod Complex of the central Transantarctic Mountains at c. 1.7 Ga. However, new zircon petrochronological data from relict eclogite preserved in the Nimrod Complex indicate that high-pressure metamorphism did not occur in the Palaeoproterozoic, but instead occurred during early Palaeozoic Ross orogenesis along the active convergent margin of East Gondwana. Relict c. 1.7 Ga zircons from the eclogites have trace-element characteristics reflecting the original igneous precursor, thereby casting doubt on evidence for a Palaeoproterozoic convergent plate boundary along the current eastern margin of the Mawson Continent. Therefore, rather than a Palaeoproterozoic (c. 1.7 Ga) history involving subduction-related continental collision, a pattern of crustal shortening, magmatism, and high thermal gradient metamorphism connected cratons in Australia, East Antarctica, and western Laurentia at that time, leading eventually to amalgamation of Nuna at c. 1.6 Ga.


2020 ◽  
Vol 543 ◽  
pp. 116355 ◽  
Author(s):  
Bo Huang ◽  
Timothy M. Kusky ◽  
Tim E. Johnson ◽  
Simon A. Wilde ◽  
Lu Wang ◽  
...  

2020 ◽  
Author(s):  
J. Brendan Murphy ◽  
R. Damian Nance ◽  
Philip J. Heron

<p>Controversy about the status of Pannotia (Laurentia + Baltica + Gondwana) as an Ediacaran supercontinent centers on palaeomagnetic data (which is permissive not conclusive) and geochronology (which implies breakup commenced before full assembly). But evidence of past supercontinent assembly is not limited to these two criteria and can be found in many other phenomena that accompany the process. Irrespective of whether Pannotia qualifies as a supercontinent, a key unanswered question is whether the legacy of its amalgamation influenced global mantle convection patterns because such patterns are generally ignored in models claiming the transition from Rodinia to Pangaea represents a single supercontinent cycle. We contend that the proxy signals of assembly and breakup in the Ediacaran are unmistakable and indicate profound changes in mantle circulation. These changes correlate with a wealth of geologic data for Pan-African collisional orogenesis, reflecting the amalgamation of the Gondwana, and for tectonothermal activity along the Gondwanan portion of Pannotia’s periphery.</p><p> </p><p>Collisional orogenesis necessitates subduction of oceanic lithosphere between the converging continental blocks. By analogy with the amalgamation of Pangea, the subducted oceanic lithosphere should have congregated to form a “slab graveyard” along the core-mantle boundary that would have generated a superplume beneath the Gondwanan component of Pannotia, the effects of which can be seen along its margins. We suggest that such dramatic changes in mantle convection patterns can indeed be recognized, they provide insights into the processes responsible for the opening of the Iapetus and Rheic oceans, and a potential explanation for some of the enigmatic tectonothermal events that characterize the Late Neoproterozoic-Early Paleozoic tectonic evolution of the margin of Gondwana.</p>


2020 ◽  
Author(s):  
Sean Regan ◽  
◽  
William H. Peck ◽  
Justin Mistikawy ◽  
Michael L. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document