scholarly journals Evaluating preservation bias in the continental growth record against the monazite archive

Geology ◽  
2021 ◽  
Author(s):  
Jacob A. Mulder ◽  
Peter A. Cawood

Most recent models of continental growth are based on large global compilations of detrital zircon ages, which preserve a distinctly episodic record of crust formation over billion-year timescales. However, it remains unclear whether this uneven distribution of zircon ages reflects a true episodicity in the generation of continental crust through time or is an artifact of the selective preservation of crust isolated in the interior of collisional orogens. We address this issue by analyzing a new global compilation of monazite ages (n >100,000), which is comparable in size, temporal resolution, and spatial distribution to the zircon continental growth record and unambiguously records collisional orogenesis. We demonstrate that the global monazite and zircon age distributions are strongly correlated throughout most of Earth history, implying a link between collisional orogenesis and the preserved record of continental growth. Our findings support the interpretation that the continental crust provides a preservational, rather than generational, archive of crustal growth.

2020 ◽  
Author(s):  
Inês Pereira ◽  
Craig D. Storey ◽  
Robin Strachan ◽  
Hugo Moreira ◽  
James Darling ◽  
...  

<p>Plate tectonics is responsible for shaping the Earth’s surface, influencing the geological, hydrological and atmospheric cycles. However, there is no consensus on when plate tectonics initiated: was it fully operational during the Archean or did it not develop until the Proterozoic?</p><p>Much of what is currently known about the secular evolution of Earth’s continental crust and its links to plate tectonics has been recovered from detrital minerals. This is related to the incomplete rock record; the detrital record allows access to information from eroded and unexposed terrains. Most studies have relied on the detrital zircon record, but it is still unclear if the coincidence in age peaks with periods of supercontinent assembly reflects episodic continental growth or bias due to selective preservation of new crust within collisional orogenic belts. Furthermore, because zircon mostly grows in high-temperature conditions, it mostly calibrates magmatic cycles. To understand the evolution of plate tectonics and to assess its influence on continental crust preservation, we developed a new proxy, relevant to a range of metamorphic conditions, including HP-LT.</p><p>We investigate the U-Pb distribution ages of detrital rutile, from a range of modern stream sediments and siliciclastic units at sub-amphibolite facies metamorphic grade. Rutile mostly forms in collisional orogens and, by comparison with the zircon record, we can test the existence of a preservation bias. Zircon and rutile age distributions from our sample sets show a significant correlation, both peaks and troughs, that can only be reconciled if the detrital zircon record reflects a preservation bias that occurred during supercontinent assembly.</p><p>We further present new U-Pb and trace element data from detrital rutile within two clastic sedimentary units, preserved at sub-greenschist facies conditions in NW Scotland. These are the Torridon (Tonian) and the Ardvreck (Cambrian) groups, whose detrital zircon ages span a significant period between 3 and 1 Ga. By applying Zr-in-rutile thermometry and comparing it to the preserved metamorphic record, we show that both low and high dT/dP conditions can be inferred since at least 2.1 Ga.</p><p>Combining the existence of paired metamorphism up to 2.1 Ga with the periodic preservation of the continental crust throughout most of the Earth’s history implies that one-sided subduction, a hallmark of plate tectonics, has operated since at least the late Paleoproterozoic, and that supercontinent assembly during and after this period has been driven by plate tectonic mechanisms.</p>


Geology ◽  
2021 ◽  
Author(s):  
Shanan E. Peters ◽  
Craig R. Walton ◽  
Jon M. Husson ◽  
Daven P. Quinn ◽  
Oliver Shorttle ◽  
...  

Rock quantity and age are fundamental features of Earth’s crust that pertain to many problems in geoscience. Here we combine new estimates of igneous rock area in continental crust from the Macrostrat database (https://macrostrat.org/) with a compilation of detrital zircon ages in order to investigate rock cycling and crustal growth. We find that there is little or no decrease in igneous rock area with increasing rock age. Instead, igneous rock area in North America exhibits four distinct Precambrian peaks, remains low through the Neoproterozoic, and then increases only modestly toward the recent. Peaks in Precambrian detrital zircon age frequency distributions align broadly with peaks in igneous rock area, regardless of grain depositional age. However, detrital zircon ages do underrepresent a Neoarchean peak in igneous rock area; young grains and ca. 1.1 Ga grains are also overrepresented relative to igneous area. Together, these results suggest that detrital zircon age distributions contain signatures of continental denudation and sedimentary cycling that are decoupled from the cycling of igneous source rocks. Models of continental crustal evolution that incorporate significant early increase in volume and increased sedimentation in the Phanerozoic are well supported by these data.


Author(s):  
Bruno Dhuime ◽  
Chris J. Hawkesworth ◽  
Hélène Delavault ◽  
Peter A. Cawood

Less than 25% of the volume of the juvenile continental crust preserved today is older than 3 Ga, there are no known rocks older than approximately 4 Ga, and yet a number of recent models of continental growth suggest that at least 60–80% of the present volume of the continental crust had been generated by 3 Ga. Such models require that large volumes of pre-3 Ga crust were destroyed and replaced by younger crust since the late Archaean. To address this issue, we evaluate the influence on the rock record of changing the rates of generation and destruction of the continental crust at different times in Earth's history. We adopted a box model approach in a numerical model constrained by the estimated volumes of continental crust at 3 Ga and the present day, and by the distribution of crust formation ages in the present-day crust. The data generated by the model suggest that new continental crust was generated continuously, but with a marked decrease in the net growth rate at approximately 3 Ga resulting in a temporary reduction in the volume of continental crust at that time. Destruction rates increased dramatically around 3 billion years ago, which may be linked to the widespread development of subduction zones. The volume of continental crust may have exceeded its present value by the mid/late Proterozoic. In this model, about 2.6–2.3 times of the present volume of continental crust has been generated since Earth's formation, and approximately 1.6–1.3 times of this volume has been destroyed and recycled back into the mantle. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics'.


2020 ◽  
pp. 1-16
Author(s):  
Jian-Hui Liu ◽  
Fu-Lai Liu ◽  
Zheng-Jiang Ding ◽  
Hong Yang ◽  
Ping-Hua Liu ◽  
...  

Abstract The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of > 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (> 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.


Author(s):  
Yujian Wang ◽  
Dicheng Zhu ◽  
Chengfa Lin ◽  
Fangyang Hu ◽  
Jingao Liu

Accretionary orogens function as major sites for the generation of continental crust, but the growth model of continental crust remains poorly constrained. The Central Asian Orogenic Belt, as one of the most important Phanerozoic accretionary orogens on Earth, has been the focus of debates regarding the proportion of juvenile crust present. Using published geochemical and zircon Hf-O isotopic data sets for three belts in the Eastern Tianshan terrane of the southern Central Asian Orogenic Belt, we first explore the variations in crustal thickness and isotopic composition in response to tectono-magmatic activity over time. Steady progression to radiogenic zircon Hf isotopic signatures associated with syn-collisional crustal thickening indicates enhanced input of mantle-derived material, which greatly contributes to the growth of the continental crust. Using the surface areas and relative increases in crustal thickness as the proxies for magma volumes, in conjunction with the calculated mantle fraction of the mixing flux, we then are able to determine that a volume of ∼14−22% of juvenile crust formed in the southern Central Asian Orogenic Belt during the Phanerozoic. This study highlights the validity of using crustal thickness and zircon isotopic signatures of magmatic rocks to quantify the volume of juvenile crust in complex accretionary orogens. With reference to the crustal growth pattern in other accretionary orogens and the Nd-Hf isotopic record at the global scale, our work reconciles the rapid crustal growth in the accretionary orogens with its episodic generation pattern in the formation of global continental crust.


2019 ◽  
Vol 27 (2) ◽  
pp. 161-186
Author(s):  
A. B. Vrevskii

The paper reports new data on the composition and age of the Neoarchean calc-alkaline volcanic rocks of the Uraguba–Kolmozero–Voron’ya greenstone belt (UKV GB). Petrological-geochemical modeling indicates a polygenetic origin of primary melts of the basalt–andesite–dacite association and non-subduction geodynamic mechanisms for the crustal growth in the largest greenstone belt of the Kola–Norwegian Block of the Fennoscandian shield.


Geology ◽  
2016 ◽  
Vol 44 (10) ◽  
pp. 819-822 ◽  
Author(s):  
Hélène Delavault ◽  
Bruno Dhuime ◽  
Chris J. Hawkesworth ◽  
Peter A. Cawood ◽  
Horst Marschall ◽  
...  

Author(s):  
A. L. Dergachev

Tectonic evolution of the Earth is a principle global factor responsible for uneven distribution of lead and zinc reserves in geological time. Cyclic changes in productivity of lead-zinc ore-formation processes resulted from periodical amalgamation of most blocks of continental crust, formation, stabilization and final break-up of supercontinents. Many features of age spectrums of lead and zinc reserves are caused by gradual increase of volume of continental crust resulting from accretion of island arcs to ancient cratons, widening of distribution of ensialic environments of ore-formation and increasing role of continental crust in magmatic processes.


Sign in / Sign up

Export Citation Format

Share Document