From subduction initiation to arc–polarity reversal: Life cycle of an Archean subduction zone from the Zunhua ophiolitic mélange, North China Craton

2020 ◽  
Vol 350 ◽  
pp. 105868 ◽  
Author(s):  
Wenbin Ning ◽  
Timothy Kusky ◽  
Junpeng Wang ◽  
Lu Wang ◽  
Hao Deng ◽  
...  
2021 ◽  
Author(s):  
Wenbin Ning ◽  
Timothy Kusky ◽  
Junpeng Wang ◽  
Lu Wang ◽  
Hao Deng ◽  
...  

<p>Subduction initiation and arc–polarity reversal have rarely been recognized in the Archean rock record. We document Neoarchean subduction initiation, fore-arc magmatism, and an arc–polarity reversal event from the Zunhua structural belt along the eastern margin of the Central Orogenic Belt (COB) of the North China Craton (NCC). The Zunhua ophiolitic mélange within the Zunhua structural belt is a mappable unit characterized by blocks of metamorphosed harzburgite/lherzolite, podiform chromite –bearing dunite, pyroxenite, amphibolite, metabasites (basalt and diabase) with rare intermediate volcanics, chert, and tectonic lenses of banded iron formation in a strongly sheared metapelitic matrix. New geochronological and geochemical analyses of magmatic blocks within the ophiolitic mélange show that the crustal magmatic rocks were produced in a fore-arc region at 2.55–2.52 Ga from depletion of the harzburgitic–lherzolitic mantle tectonites. Chemical, petrological, and temporal links between the depleted mantle blocks, and the suite of magmatic blocks derived from partial melting and metasomatism of these depleted mantle blocks, unequivocally shows that they represent part of the same original Neoarchean fore-arc ophiolite suite. After formation and accretion in the oceanic realm, the mélange was emplaced on the continental margin of the Eastern Block between 2.52–2.50 Ga, and underwent two stages of metamorphism at ca. 2.48–2.46 Ga and 1.81 Ga. Metamorphosed intermediate–mafic volcanic blocks exhibit systematic successive geochemical variations, from MORB-like to volcanic arc-like, and the N-MORB-like meta-basalts show remarkable similarity with the subduction initiation-related Izu–Bonin–Mariana (IBM) fore-arc basalts. We suggest that the Zunhua fore-arc complex records continuous geodynamic processes from subduction initiation to arc magmatism. The Zunhua ophiolitic mélange is part of a ca. 2.5 Ga suture between an oceanic arc of the COB and Eastern Block of the NCC. After the arc–continent collision, an arc–polarity reversal event has been proposed to initiate a new eastward–dipping subduction zone on the western side of the COB. This arc–polarity reversal can be traced for more than 1,600 km along the length of the orogen, similar in scale, geometry, and duration between collision and polarity flip to the present-day arc–polarity reversal of the Sunda–Banda arc during its ongoing collision with the Australia continent. This indicates that a life cycle of an Archean subduction zone, including birth (subduction initiation), maturity (arc magmatism), death (arc-continent collision) and re-birth (arc–polarity reversal), is recorded in the Zunhua ophiolitic mélange, and the geodynamics of plate tectonics at the end of the Archean was similar to that of today.</p><p> </p>


Author(s):  
Hao Deng ◽  
Ning Jia ◽  
Timothy Kusky ◽  
Ali Polat ◽  
Guanglei Peng ◽  
...  

We report a spatially and temporally linked arc magmatic association of 2.55−2.50 Ga mid-ocean ridge basalt (MORB)-affinity gabbros, arc-affinity basalts, high-Mg basalts/basaltic andesites (HMBA), Nb-enriched basalts (NEB), and a tonalite-trondhjemite-granodiorite (TTG)-like granodiorite from the Dengfeng greenstone belt (DFGB), North China Craton. These are identical to arc magmatic rock suites from hot subduction in the present plate mosaic, and resemble suites formed during subduction initiation. Laser ablation−inductively coupled plasma−mass spectrometry zircon U-Pb dating indicates that gabbros and granodiorites intruded at ca. 2.55 Ga and the HMBAs formed at ca. 2.50 Ga, indicating a long duration of subduction zone magmatic activity of at least 50 m.y. in the DFGB. The gabbros are characterized by flat light-rare earth element (LREE) patterns without negative Nb and Zr anomalies, showing a MORB-like geochemical affinity. Combined with previously reported normal-MORB-type basalts, we suggest that they may represent magmatic products during intraoceanic subduction initiation where their mantle source was slightly metasomatized by subduction-derived fluids during the initiation stage. The arc-affinity basalts are characterized by slightly enriched LREE patterns with negative Nb and Zr anomalies. The HMBAs have higher contents of MgO, Ni, and Cr and display more fractionated rare earth element (REE) patterns and large negative Nb and Zr anomalies than the arc-affinity basalts. The NEBs are characterized by high absolute contents of Nb (9.9−14 ppm) and high ratios of Nb/Laprimitive mantle (pm) (0.40−0.46) and Nb/Thpm (0.44−0.54), and moderately fractionated REE and minor negative Nb anomalies with no Zr anomalies. One granodiorite sample is characterized by a highly fractionated REE pattern and negative Nb and Zr anomalies. Geochemical modeling suggests that the association of the normal arc-affinity basalt (NAB)-HMBA-NEB can be interpreted to be generated by hybridization of mantle wedge peridotites by slab-derived TTG-like melts. Positive values of whole-rock εNd (t) and zircon εHf (t) of the 2.55−2.50 Ga magmatic associations are consistent with a long-term depleted mantle source for the mafic assemblage. The 2.55−2.50 Ga magmatic association from MORB-affinity gabbros and basalts to arc-affinity NAB-HMBA-NEB may record a continuous Neoarchean geodynamic process from intraoceanic subduction initiation to mature arc magmatism. The NAB-HMBA-NEB association with regional sanukitoids and high-Al TTGs indicates that hot subduction may have played an important role in the production of arc-related magmatism during the Archean.


2016 ◽  
Vol 90 (s1) ◽  
pp. 200-200
Author(s):  
Hao DENG ◽  
Junpeng WANG ◽  
Timothy KUSKY ◽  
Lu WANG ◽  
Ali POLAT

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 748
Author(s):  
Bin Wang ◽  
Wei Tian ◽  
Bin Fu ◽  
Jia-Qi Fang

Greenschist facies metabasite (chlorite schist) and metasediments (banded iron formation (BIF)) in the Wutai Complex, North China Craton recorded extensive fluid activities during subduction-related metamorphism. The pervasive dolomitization in the chlorite schist and significant dolomite enrichment at the BIF–chlorite schist interface support the existence of highly channelized updip transportation of CO2-rich hydrothermal fluids. Xenotime from the chlorite schist has U concentrations of 39–254 ppm and Th concentrations of 121–2367 ppm, with U/Th ratios of 0.11–0.62, which is typical of xenotime precipitated from circulating hydrothermal fluids. SHRIMP U–Th–Pb dating of xenotime determines a fluid activity age of 1.85 ± 0.07 Ga. The metasomatic dolomite has δ13CV-PDB from −4.17‰ to −3.10‰, which is significantly lower than that of carbonates from greenschists, but similar to the fluid originated from Rayleigh fractionating decarbonation at amphibolite facies metamorphism along the regional geotherm (~15 °C/km) of the Wutai Complex. The δ18OV-SMOW values of the dolomite (12.08–13.85‰) can also correspond to this process, considering the contribution of dehydration. Based on phase equilibrium modelling, we ascertained that the hydrothermal fluid was rich in CO2, alkalis, and silica, with X(CO2) in the range of 0.24–0.28. All of these constraints suggest a channelized CO2-rich fluid activity along the sediment–basite interface in a warm Paleoproterozoic subduction zone, which allowed extensive migration and sequestration of volatiles (especially carbon species) beneath the forearc.


Author(s):  
Wei Fang ◽  
Li-Qun Dai ◽  
Yong-Fei Zheng ◽  
Zi-Fu Zhao ◽  
Li-Tao Ma ◽  
...  

Subduction of the Paleo-Pacific slab beneath the North China Craton (NCC) has exerted a strong influence on the Mesozoic destruction of the craton. However, no Andean-type arc magmatism has been reliably identified in the eastern NCC. Here we report the occurrence of Jurassic arc-like lamprophyres in the Liaodong Peninsula, providing a snapshot of the Paleo-Pacific slab subduction beneath the NCC in the early Mesozoic. Zircon U-Pb dating of the lamprophyres yields consistent ages of 158−155 Ma for magma crystallization. These lamprophyres all exhibit typical arc-like trace element distribution patterns, but show a series differences in their radiogenic isotope compositions and the other geochemical variables. Type 1 lamprophyres exhibit weakly enriched Sr-Nd-Hf isotopes with (87Sr/86Sr)i ratios of 0.7075−0.7085, εNd(t) values of −3.9 to −1.3 and εHf(t) values of −5.4 to −0.3, whereas Type 2 lamprophyres exhibit moderately enriched radiogenic isotopes with (87Sr/86Sr)i ratios of 0.7096−0.7117, εNd(t) values of −12.2 to −7.6 and εHf(t) values of −12.8 to −4.7. There are also systematic differences in zircon Hf isotopes and whole-rock Ba/Th, Ba/La, Sr/Nd, Th/Nd, Th/Yb, and La/Sm ratios for the two types of lamprophyre. Taken together, these similarities and differences can be accounted for by metasomatic reaction of the cratonic mantle wedge with two properties of liquid phase derived from subducting Paleo-Pacific slab. One is aqueous solutions from the subducting basaltic oceanic crust, and the other is hydrous melts from the subducting terrigenous. The two properties of subduction zone fluids were incorporated in different proportions into the mantle sources of these lamprophyres. Accordingly, the lamprophyres were derived from the metasomatic mantle sources. This qualitative interpretation is verified by quantitative modeling of the geochemical transfer at the slab-mantle interface in a paleo-oceanic subduction zone. Therefore, the Jurassic lamprophyres in the eastern NCC provide the geochemical evidence for the crust-mantle interaction during the Paleo-Pacific slab subduction beneath eastern Asia in the early Mesozoic, when the chemical metasomatism by the slab-derived fluids would have weakened the cratonic mantle for its thinning and destruction in the Early Cretaceous.


Author(s):  
Qichao Zhang ◽  
Zhong-Hai Li ◽  
Zhenhan Wu ◽  
Xuanhua Chen ◽  
Ji’en Zhang ◽  
...  

The supra-subduction zone ophiolite or ophiolitic mélange formed in the forearc setting is generally considered to be a key geological record for subduction initiation (SI) with petrological characteristics comparable to the SI-related rock sequence from forearc basalt (FAB) to boninite in the Izu-Bonin-Mariana subduction zone. Nevertheless, the standard FAB and boninite are generally difficult to observe in the forearc rocks generated during SI. Yet, a typical rock sequence indicating the SI of the western Proto-Tethys Ocean is reported for the first time in the Qimanyute intra-oceanic forearc system in the western Kunlun Orogen, Northwest Tibetan Plateau. The magmatic compositions, which range from less to more high field strength element (HFSE)-depleted and large ion lithophile element (LILE)-enriched, are changing from oceanic plagiogranites (ca. 494 Ma) to forearc basalt-like gabbros (FAB-Gs, ca. 487 Ma), boninites, and subsequent Nb-enriched gabbros (NEGs, ca. 485 Ma), which are thus consistent with the Izu-Bonin-Mariana forearc rocks as well as the Troodos and Semail supra-subduction zone-type ophiolites. The geochemical data from the chemostratigraphic succession indicate a subduction initiation process from a depleted mid-oceanic-ridge (MORB)-type mantle source with no detectable subduction input to gradual increasing involvement of subduction-derived materials (fluid/melts and sediments). The new petrological, geochemical, and geochronological data, combined with the regional geology, indicate that the well-sustained FAB-like intrusive magmas with associated boninites could provide crucial evidence for SI and further reveal that the SI of the western Proto-Tethys Ocean occurred in the Late Cambrian (494−485 Ma).


2021 ◽  
pp. 1-21
Author(s):  
Yun-Xi Meng ◽  
Zhi-Cheng Zhang ◽  
Jian-Zhou Tang ◽  
Huai-Hui Zhang ◽  
Qi Wang ◽  
...  

Abstract The Harihada–Chegendalai ophiolitic mélange, which is located between the Bainaimiao arc and the North China Craton, holds significant clues regarding the tectonic setting of the southern margin of the Central Asian Orogenic Belt. The ophiolitic mélange is mainly composed of gabbroic and serpentinized ultramafic rocks. Here, zircon U–Pb dating, in situ zircon Hf isotopic, whole-rock geochemical and in situ mineral chemical data from the ophiolitic mélange are reported. The zircons in the gabbroic rocks yielded concordia U–Pb ages of 450–448 Ma and exhibited slightly positive ϵHf(t) values (0.87–4.34). The geochemical characteristics of the gabbroic rocks indicate that they were generated from a mantle wedge metasomatized by subduction-derived melts from sediments with continental crust contamination, in a fore-arc tectonic setting. These rocks also experienced the accumulation of plagioclase. The geochemical characteristics of the ultramafic rocks and their Cr-spinels indicate that they may constitute part of residual mantle that has experienced a high degree of partial melting and has interacted with fluids/melts released from the subducted slab in the same fore-arc tectonic setting. The ophiolitic mélange may therefore have formed in this fore-arc tectonic setting, resulting from the northward subduction of the South Bainaimiao Ocean beneath the Bainaimiao arc during Late Ordovician time, prior to the collision between the Bainaimiao arc and the North China Craton during the Silurian to Carboniferous periods.


2019 ◽  
Vol 326 ◽  
pp. 105-123 ◽  
Author(s):  
Hao Deng ◽  
Timothy Kusky ◽  
Ali Polat ◽  
Bingyuan Lan ◽  
Bo Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document