Early Neoproterozoic tectonic evolution of northern Yangtze Block: Insights from sedimentary sequences from the Dahongshan area

2021 ◽  
Vol 365 ◽  
pp. 106382
Author(s):  
Yu Huang ◽  
Xiao-Lei Wang ◽  
Jun-Yong Li ◽  
Di Wang ◽  
Chang-Hong Jiang ◽  
...  
Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 333 ◽  
Author(s):  
Wei Liu ◽  
Xiaoyong Yang ◽  
Shengyuan Shu ◽  
Lei Liu ◽  
Sihua Yuan

Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with εHf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with εHf(t) of −20.1 and a two-stage modeled age of 4152 Ma. These data provide indirect evidence for the residues of the Hadean crustal nuclei in the Yangtze Block. In combination with the published data, the ages of detrital zircons from the Yinmin Formation yielded three peak ages: 1.84, 2.30 and 2.71 Ga. The peaks of 1.84 and 2.71 Ga are global in distribution, and they are best correlated to the collisional accretion of cratons in North America. Moreover, the peak of 1.84 Ga coincides with the convergence of the global Columbia supercontinent. The youngest age of the detrital zircon from the Yinmin Formation was 1710 Ma; the age of the intrusive diabase was 1689 ± 34 Ma, whereas the weighted average age of the sedimentary tuff from the Heishan Formation was 1414 ± 25 Ma. It was presumed that the depositional age for DCG was 1.71–1.41 Ga, which was in accordance with the timing of the breakup of the Columbia supercontinent. At ~1.7 Ga, the geochemical data of the diabase were characterized by E-MORB and the region developed the same period A-type granites. Thus, 1.7 Ga should represent the time of the initial breakup of the Yangtze Block. Furthermore, the Yangtze Block continues to stretch and breakup until ~1.4 Ga, which is characterized by the emergence of oceanic island, deep-sea siliceous rock and flysch, representing the final breakup. In brief, the tectonic evolution of the Yangtze Block during the Late Paleoproterozoic to Mesoproterozoic coincided with the events caused by the convergence and breakup of the Columbia supercontinent, because of which, the Yangtze Block experienced extensive magmatic activity and sedimentary basin development during this period.


2010 ◽  
Vol 182 (1-2) ◽  
pp. 57-69 ◽  
Author(s):  
Xin-Fu Zhao ◽  
Mei-Fu Zhou ◽  
Jian-Wei Li ◽  
Min Sun ◽  
Jian-Feng Gao ◽  
...  

2006 ◽  
Vol 151 (1-2) ◽  
pp. 14-30 ◽  
Author(s):  
Xian-Hua Li ◽  
Zheng-Xiang Li ◽  
James A. Sinclair ◽  
Wu-Xian Li ◽  
Garreth Carter

Author(s):  
Chen Wu ◽  
Jie Li ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Xuanhua Chen ◽  
...  

The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.


2020 ◽  
Vol 50 (1) ◽  
pp. 337-349 ◽  
Author(s):  
Michael B. Stephens ◽  
Ulf Bergström ◽  
Carl-Henric Wahlgren

AbstractThe 1.1–0.9 Ga Sveconorwegian orogen in southwestern Scandinavia belongs to the global system of mountain belts established during the assembly of the supercontinent Rodinia. An overall north–south structural trend and five lithotectonic units bounded by crustal-scale shear zones characterize this orogen. In Sweden, the Eastern Segment abuts the orogen's cratonic foreland eastwards and is separated from the Idefjorden terrane westwards by a ductile shear zone, up to 5 km thick, displaying a sinistral transpressive component. These two lithotectonic units differ on the basis of their pre-Sveconorwegian accretionary tectonic evolution, and the timing of Sveconorwegian high-pressure metamorphism, anatexis and polyphase deformation. High-pressure granulites and migmatites formed at c. 1.05–1.02 Ga in the Idefjorden terrane; eclogites, high-pressure granulites and migmatites at c. 0.99–0.95 Ga in the Eastern Segment. Magmatic activity and crustal extension progressed westwards at c. 0.98–0.92 Ga. Prior to or at 0.93–0.91 Ga, greenschist facies shear deformation with top-to-the-foreland movement affected the frontal part of the orogen. Geodynamic uncertainties concern the affinity of the Idefjorden terrane relative to Fennoscandia (Baltica), the character of the Sveconorwegian orogenesis, and the contiguous or non-contiguous nature of the erosional fronts of the late Mesoproterozoic–early Neoproterozoic orogens in Sweden and Canada.


Sign in / Sign up

Export Citation Format

Share Document