Origin of ultramafic–mafic bodies on the Isles of Lewis and Harris (Scotland, UK): Constraints on the Archean–Paleoproterozoic evolution of the Lewisian Gneiss Complex, North Atlantic Craton

2022 ◽  
Vol 369 ◽  
pp. 106523
Author(s):  
George L. Guice ◽  
Sophie R. Miocevich ◽  
Hannah S.R. Hughes ◽  
Iain McDonald ◽  
Kathryn M. Goodenough ◽  
...  
2020 ◽  
Vol 177 (4) ◽  
pp. 700-717
Author(s):  
George L. Guice ◽  
Iain McDonald ◽  
Hannah S.R. Hughes ◽  
John M. MacDonald ◽  
John W. Faithfull

2019 ◽  
Vol 60 (10) ◽  
pp. 1991-2024 ◽  
Author(s):  
M G Kopylova ◽  
E Tso ◽  
F Ma ◽  
J Liu ◽  
D G Pearson

Abstract We studied the petrography, mineralogy, thermobarometry and whole-rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156–138 Ma Chidliak kimberlite province (Southern Baffin Island). Xenoliths from pipes CH-1, -6, -7 and -44 are divided into two garnet-bearing series, dunites–harzburgites–lherzolites and wehrlites–olivine pyroxenites. Both series show widely varying textures, from coarse to sheared, and textures of late formation of garnet and clinopyroxene. Some samples from the lherzolite series may contain spinel, whereas wehrlites may contain ilmenite. In CH-6, rare coarse samples of the lherzolite and wehrlite series were derived from P = 2·8 to 5·6 GPa, whereas predominant sheared and coarse samples of the lherzolite series coexist at P = 5·6–7·5 GPa. Kimberlites CH-1, -7, -44 sample mainly the deeper mantle, at P = 5·0–7·5 GPa, represented by coarse and sheared lherzolite and wehrlite series. The bulk of the pressure–temperature arrays defines a thermal state compatible with 35–39 mW m–2 surface heat flow, but a significant thermal disequilibrium was evident in the large isobaric thermal scatter, especially at depth, and in the low thermal gradients uncharacteristic of conduction. The whole-rock Si and Mg contents of the Chidliak xenoliths and their mineral chemistry reflect initial high levels of melt depletion typical of cratonic mantle and subsequent refertilization in Ca and Al. Unlike the more orthopyroxene-rich mantle of many other cratons, the Chidliak mantle is rich (∼83 vol%) in forsteritic olivine. We assign this to silicate–carbonate metasomatism, which triggered wehrlitization of the mantle. The Chidliak mantle resembles the Greenlandic part of the North Atlantic Craton, suggesting the former contiguous nature of their lithosphere before subsequent rifting into separate continental fragments. Another, more recent type of mantle metasomatism, which affected the Chidliak mantle, is characterized by elevated Ti in pyroxenes and garnet typical of all rock types from CH-1, -7 and -44. These metasomatic samples are largely absent from the CH-6 xenolith suite. The Ti imprint is most intense in xenoliths derived from depths equivalent to 5·5–6·5 GPa where it is associated with higher strain, the presence of sheared samples of the lherzolite series and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as tens of kilometers or as local as <1 km. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as <1 Myr, shortly predating kimberlite formation. A complex protracted metasomatic history of the North Atlantic Craton reconstructed from Chidliak xenoliths matches emplacement patterns of deep CO2-rich and Ti-rich magmatism around the Labrador Sea prior to the craton rifting. The metasomatism may have played a pivotal role in thinning the North Atlantic Craton lithosphere adjacent to the Labrador Sea from ∼240 km in the Jurassic to ∼65 km in the Paleogene.


2017 ◽  
pp. 563-592 ◽  
Author(s):  
A.P. Nutman ◽  
V.C. Bennett ◽  
C.R.L. Friend ◽  
A.R. Chivas

2020 ◽  
Vol 8 ◽  
Author(s):  
Adam Andreas Garde ◽  
Brian Frederick Windley ◽  
Thomas Find Kokfelt ◽  
Nynke Keulen

The 700 km-long North Atlantic Craton (NAC) in West Greenland is arguably the best exposed and most continuous section of Eo-to Neoarchaean crust on Earth. This allows a close and essential correlation between geochemical and isotopic data and primary, well-defined and well-studied geological relationships. The NAC is therefore an excellent and unsurpassed stage for the ongoing controversial discussion about uniformitarian versus non-uniformitarian crustal evolution in the Archaean. The latest research on the geochemistry, structural style, and Hf isotope geochemistry of tonalite-trondhjemite-granodiorite (TTG) complexes and their intercalated mafic to intermediate volcanic belts strongly supports previous conclusions that the NAC formed by modern-style plate tectonic processes with slab melting of wet basaltic oceanic crust in island arcs and active continental margins. New studies of the lateral tectonic convergence and collision between juvenile belts in the NAC corroborate this interpretation. Nevertheless, it has repeatedly been hypothesised that the Earth’s crust did not develop by modern-style, subhorizontal plate tectonics before 3.0 Ga, but by vertical processes such as crustal sinking and sagduction, and granitic diapirism with associated dome-and-keel structures. Many of these models are based on supposed inverted crustal density relations, with upper Archaean crust dominated by heavy mafic ridge-lavas and island arcs, and lower Archaean crust mostly consisting of felsic, supposedly buoyant TTGs. Some of them stem from older investigations of upper-crustal Archaean greenstone belts particularly in the Dharwar craton, the Slave and Superior provinces and the Barberton belt. These interpreted interactions between these upper and lower crustal rocks are based on the apparent down-dragged greenstone belts that wrap around diapiric granites. However, in the lower crustal section of the NAC, there is no evidence of any low-density granitic diapirs or heavy, downsagged or sagducted greenstone belts. Instead, the NAC contains well-exposed belts of upper crustal, arc-dominant greenstone belts imbricated and intercalated by well-defined thrusts with the protoliths of the now high-grade TTG gneisses, followed by crustal shortening mainly by folding. This shows us that the upper and lower Archaean crustal components did not interact by vertical diapirism, but by subhorizontal inter-thrusting and folding in an ambient, mainly convergent plate tectonic regime.


2020 ◽  
Author(s):  
Daniel Buczko ◽  
Magdalena Matusiak-Małek ◽  
Brian J. G. Upton ◽  
Theodoros Ntaflos ◽  
Sonja Aulbach ◽  
...  

<p>The northernmost part of Scotland – the Hebridean Terrane – is formed of Archean rocks originally being part of the Laurentian North Atlantic Craton. The geological history of the terrane is well recognised, however details of its internal structure remain unknown. The Eocene (Faithfull et al. 2012, JGS) Loch Roag monchiquite (Lewis Island) sampled deep-seated lithologies, providing insight on evolution and geological structure of the deeper lithosphere of the Hebridean terrane. The monchiquite comprises abundant xenoliths of ultramafic, mafic and felsic rocks. The peridotitic xenoliths represent pieces of Archean mantle underlying marginal parts of the North Atlantic Craton, whereas the origin of non-peridotitic lithologies is uncertain.</p><p>The studied suite of samples comprises two groups: 1) “xenoliths” of diorites (plagioclase, clinopyroxene, orthopyroxene, apatite, opaques) and biotite clinopyroxenites (+apatite), 2) “megacrysts” of clinopyroxene and K-feldspar, both with inclusions of clinopyroxene, biotite and apatite. Megacrysts of alkali-rich feldspar associated with corundum and HFSE-bearing minerals, and composite xenoliths formed of pyroxenite and K-feldspar-rich lithology have also been described from this locality (Menzies et al., 1986, Geol. Soc. Australia Spec. Pub.; Upton et al., 2009, Mineral. Mag.).</p><p>We interpret the “xenoliths” as products of crystallization of fractionated mafic melt(s). The primary character of Sr isotopic ratios in plagioclase (<sup>87</sup>Sr/<sup>86</sup>Sr <0.702) suggests that parental melt of those lithologies originated from melting of depleted lithospheric mantle sources. The “megacrysts” represent fragments of disintegrated alkaline pegmatite(s) formed from melt of plausible mantle origin, possibly enriched (<sup>87</sup>Sr/<sup>86</sup>Sr in feldspar >0.704).</p><p>Trace element composition, similar Sr isotopic ratios of minerals and textural features of “xenoliths” and “megacrysts” groups suggest their close genetic relationship. This geochemical resemblance may reflect crystallisation from primarily similar melt(s) and source regions affected by similar metasomatism. Petrographic features observed in rocks described by Upton et al., (2009) imply that the parental magma of megacrysts might have intruded the rocks forming the xenoliths group. Moreover, the Rb-Sr ages of xenoliths (Der-Chuen et al., 1993, GCA) indicate crystallisation during (or shortly after) Caledonian orogeny. Preliminary age relationship between groups will be determined by on-going Rb-Sr dating of megacrysts.</p><p>Xenoliths similar to diorites from Loch Roag were reported by Badenszki et al. (2019, JoP) from the Midland Valley terrane (“metadiorites” of protolith ages ca. 415 Ma). They were interpreted as products of alkaline syn-/post-collisional Caledonian magmatism. Our study shows that non-peridotitic xenoliths from Loch Roag dyke might represent a record of similar (or the same) magmatism in the northernmost, “Laurentian” part of Scotland. This study presents the first report of such Caledonian magmatism record within the Hebridean Terrane.</p><p>Founded by Polish National Science Centre grant no. UMO-2016/23/B/ST10/01905, part of the data was obtained thanks to the Polish-Austrian project no. WTZ PL 08/2018.</p>


Sign in / Sign up

Export Citation Format

Share Document