Caledonian magmatism record within Hebridean Terrane? Loch Roag dyke (Lewis Island, northern Scotland) non-peridotitic xenoliths and megacrysts as messengers from deep lithosphere.

Author(s):  
Daniel Buczko ◽  
Magdalena Matusiak-Małek ◽  
Brian J. G. Upton ◽  
Theodoros Ntaflos ◽  
Sonja Aulbach ◽  
...  

<p>The northernmost part of Scotland – the Hebridean Terrane – is formed of Archean rocks originally being part of the Laurentian North Atlantic Craton. The geological history of the terrane is well recognised, however details of its internal structure remain unknown. The Eocene (Faithfull et al. 2012, JGS) Loch Roag monchiquite (Lewis Island) sampled deep-seated lithologies, providing insight on evolution and geological structure of the deeper lithosphere of the Hebridean terrane. The monchiquite comprises abundant xenoliths of ultramafic, mafic and felsic rocks. The peridotitic xenoliths represent pieces of Archean mantle underlying marginal parts of the North Atlantic Craton, whereas the origin of non-peridotitic lithologies is uncertain.</p><p>The studied suite of samples comprises two groups: 1) “xenoliths” of diorites (plagioclase, clinopyroxene, orthopyroxene, apatite, opaques) and biotite clinopyroxenites (+apatite), 2) “megacrysts” of clinopyroxene and K-feldspar, both with inclusions of clinopyroxene, biotite and apatite. Megacrysts of alkali-rich feldspar associated with corundum and HFSE-bearing minerals, and composite xenoliths formed of pyroxenite and K-feldspar-rich lithology have also been described from this locality (Menzies et al., 1986, Geol. Soc. Australia Spec. Pub.; Upton et al., 2009, Mineral. Mag.).</p><p>We interpret the “xenoliths” as products of crystallization of fractionated mafic melt(s). The primary character of Sr isotopic ratios in plagioclase (<sup>87</sup>Sr/<sup>86</sup>Sr <0.702) suggests that parental melt of those lithologies originated from melting of depleted lithospheric mantle sources. The “megacrysts” represent fragments of disintegrated alkaline pegmatite(s) formed from melt of plausible mantle origin, possibly enriched (<sup>87</sup>Sr/<sup>86</sup>Sr in feldspar >0.704).</p><p>Trace element composition, similar Sr isotopic ratios of minerals and textural features of “xenoliths” and “megacrysts” groups suggest their close genetic relationship. This geochemical resemblance may reflect crystallisation from primarily similar melt(s) and source regions affected by similar metasomatism. Petrographic features observed in rocks described by Upton et al., (2009) imply that the parental magma of megacrysts might have intruded the rocks forming the xenoliths group. Moreover, the Rb-Sr ages of xenoliths (Der-Chuen et al., 1993, GCA) indicate crystallisation during (or shortly after) Caledonian orogeny. Preliminary age relationship between groups will be determined by on-going Rb-Sr dating of megacrysts.</p><p>Xenoliths similar to diorites from Loch Roag were reported by Badenszki et al. (2019, JoP) from the Midland Valley terrane (“metadiorites” of protolith ages ca. 415 Ma). They were interpreted as products of alkaline syn-/post-collisional Caledonian magmatism. Our study shows that non-peridotitic xenoliths from Loch Roag dyke might represent a record of similar (or the same) magmatism in the northernmost, “Laurentian” part of Scotland. This study presents the first report of such Caledonian magmatism record within the Hebridean Terrane.</p><p>Founded by Polish National Science Centre grant no. UMO-2016/23/B/ST10/01905, part of the data was obtained thanks to the Polish-Austrian project no. WTZ PL 08/2018.</p>

2019 ◽  
Vol 60 (10) ◽  
pp. 1991-2024 ◽  
Author(s):  
M G Kopylova ◽  
E Tso ◽  
F Ma ◽  
J Liu ◽  
D G Pearson

Abstract We studied the petrography, mineralogy, thermobarometry and whole-rock chemistry of 120 peridotite and pyroxenite xenoliths collected from the 156–138 Ma Chidliak kimberlite province (Southern Baffin Island). Xenoliths from pipes CH-1, -6, -7 and -44 are divided into two garnet-bearing series, dunites–harzburgites–lherzolites and wehrlites–olivine pyroxenites. Both series show widely varying textures, from coarse to sheared, and textures of late formation of garnet and clinopyroxene. Some samples from the lherzolite series may contain spinel, whereas wehrlites may contain ilmenite. In CH-6, rare coarse samples of the lherzolite and wehrlite series were derived from P = 2·8 to 5·6 GPa, whereas predominant sheared and coarse samples of the lherzolite series coexist at P = 5·6–7·5 GPa. Kimberlites CH-1, -7, -44 sample mainly the deeper mantle, at P = 5·0–7·5 GPa, represented by coarse and sheared lherzolite and wehrlite series. The bulk of the pressure–temperature arrays defines a thermal state compatible with 35–39 mW m–2 surface heat flow, but a significant thermal disequilibrium was evident in the large isobaric thermal scatter, especially at depth, and in the low thermal gradients uncharacteristic of conduction. The whole-rock Si and Mg contents of the Chidliak xenoliths and their mineral chemistry reflect initial high levels of melt depletion typical of cratonic mantle and subsequent refertilization in Ca and Al. Unlike the more orthopyroxene-rich mantle of many other cratons, the Chidliak mantle is rich (∼83 vol%) in forsteritic olivine. We assign this to silicate–carbonate metasomatism, which triggered wehrlitization of the mantle. The Chidliak mantle resembles the Greenlandic part of the North Atlantic Craton, suggesting the former contiguous nature of their lithosphere before subsequent rifting into separate continental fragments. Another, more recent type of mantle metasomatism, which affected the Chidliak mantle, is characterized by elevated Ti in pyroxenes and garnet typical of all rock types from CH-1, -7 and -44. These metasomatic samples are largely absent from the CH-6 xenolith suite. The Ti imprint is most intense in xenoliths derived from depths equivalent to 5·5–6·5 GPa where it is associated with higher strain, the presence of sheared samples of the lherzolite series and higher temperatures varying isobarically by up to 200 °C. The horizontal scale of the thermal-metasomatic imprint is more ambiguous and could be as regional as tens of kilometers or as local as <1 km. The time-scale of this metasomatism relates to a conductive length-scale and could be as short as <1 Myr, shortly predating kimberlite formation. A complex protracted metasomatic history of the North Atlantic Craton reconstructed from Chidliak xenoliths matches emplacement patterns of deep CO2-rich and Ti-rich magmatism around the Labrador Sea prior to the craton rifting. The metasomatism may have played a pivotal role in thinning the North Atlantic Craton lithosphere adjacent to the Labrador Sea from ∼240 km in the Jurassic to ∼65 km in the Paleogene.


1969 ◽  
Vol 20 ◽  
pp. 67-70 ◽  
Author(s):  
Nynke Keulen ◽  
Tomas Næraa ◽  
Thomas F. Kokfelt ◽  
John C. Schumacher ◽  
Anders Scherstén

The Fiskenæsset complex in southern West Greenland is part of the North Atlantic craton and is a layered intrusion consisting of gabbro, ultramafic and anorthositic rocks that was deformed during multiple episodes of folding and metamorphism (Myers 1985). We collected late-stage magmatic hornblenditic dykes and adjacent anorthosites and studied these samples integratively with several in situ techniques to determine the igneous and metamorphic history of the Fiskenæsset complex. The work presented here is part of an ongoing joint project between the Greenland Bureau of Minerals and Petroleum and the Geological Survey of Denmark and Greenland (GEUS). Here we report on new radiometric ages and mineral chemistry data from anorthosites from the North Atlantic craton in southern West Greenland (Fig. 1).


2018 ◽  
Vol 470 (1) ◽  
pp. 19-38 ◽  
Author(s):  
Ian W. D. Dalziel ◽  
John F. Dewey

AbstractIn the first application of the developing plate tectonic theory to the pre-Pangaea world 50 years ago, attempting to explain the origin of the Paleozoic Appalachian–Caledonian orogen, J. Tuzo Wilson asked the question: ‘Did the Atlantic close and then reopen?’. This question formed the basis of the concept of the Wilson cycle: ocean basins opening and closing to form a collisional mountain chain. The accordion-like motion of the continents bordering the Atlantic envisioned by Wilson in the 1960s, with proto-Appalachian Laurentia separating from Europe and Africa during the early Paleozoic in almost exactly the same position that it subsequently returned during the late Paleozoic amalgamation of Pangaea, now seems an unlikely scenario. We integrate the Paleozoic history of the continents bordering the present day basin of the North Atlantic Ocean with that of the southern continents to develop a radically revised picture of the classic Wilson cycle The concept of ocean basins opening and closing is retained, but the process we envisage also involves thousands of kilometres of mainly dextral motion parallel with the margins of the opposing Laurentia and Gondwanaland continents, as well as complex and prolonged tectonic interaction across an often narrow ocean basin, rather than the single collision suggested by Wilson.


2020 ◽  
Vol 287 (1938) ◽  
pp. 20202318
Author(s):  
James P. Rule ◽  
Justin W. Adams ◽  
Felix G. Marx ◽  
Alistair R. Evans ◽  
Alan J. D. Tennyson ◽  
...  

Living true seals (phocids) are the most widely dispersed semi-aquatic marine mammals, and comprise geographically separate northern (phocine) and southern (monachine) groups. Both are thought to have evolved in the North Atlantic, with only two monachine lineages—elephant seals and lobodontins—subsequently crossing the equator. The third and most basal monachine tribe, the monk seals, have hitherto been interpreted as exclusively northern and (sub)tropical throughout their entire history. Here, we describe a new species of extinct monk seal from the Pliocene of New Zealand, the first of its kind from the Southern Hemisphere, based on one of the best-preserved and richest samples of seal fossils worldwide. This unanticipated discovery reveals that all three monachine tribes once coexisted south of the equator, and forces a profound revision of their evolutionary history: rather than primarily diversifying in the North Atlantic, monachines largely evolved in the Southern Hemisphere, and from this southern cradle later reinvaded the north. Our results suggest that true seals crossed the equator over eight times in their history. Overall, they more than double the age of the north–south dichotomy characterizing living true seals and confirms a surprisingly recent major change in southern phocid diversity.


Author(s):  
Alessandro Stanziani

The history of political-economic thought has been built up over the centuries with a uniform focus on European and North American thinkers. Intellectuals beyond the North Atlantic have been largely understood as the passive recipients of already formed economic categories and arguments. This view has often been accepted not only by scholars and observers in Europe but also in many other places such as Russia, India, China, Japan, and the Ottoman Empire. In this regard, the articles included in this collection explicitly differentiate from this diffusionist approach (“born in Western Europe, then flowed everywhere else”).


Sign in / Sign up

Export Citation Format

Share Document