Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting

2016 ◽  
Vol 45 ◽  
pp. 359-364 ◽  
Author(s):  
Xian Wu ◽  
Liang Li ◽  
Ning He ◽  
Chenjiao Yao ◽  
Meng Zhao
2014 ◽  
Vol 651-653 ◽  
pp. 764-767
Author(s):  
Tao Zhang ◽  
Hou Jun Qi ◽  
Gen Li

Micro cutting is a promising manufacturing method to obtain good surface integrity. Surface roughness shows size effect when the uncut chip thickness is smaller than the cutting edge radius. A special micro slot on the flank face of cutting tools was manufactured with discharge. Two groups of micro orthogonal cutting were conducted. The surface roughness of machined surface was measured and compared to each other. The results show that surface roughness decreases first and then increases with the ratio of uncut chip thickness to cutting edge radius. The surface machined with micro slot is better than that of without micro slot due to the micro slot restrain the back side flow of work piece based on the finite element model.


2021 ◽  
Author(s):  
Tongshun Liu ◽  
Yayun Liu ◽  
Kedong Zhang

Abstract Tool runout, cutting edge radius-size effect and tool wear have significant impacts on the cutting force of micro-milling. In order to predict the micro-milling force and the machining performance related to the cutting force, it is necessary to establish a cutting force model including tool runout, cutting edge radius and tool wear. In this study, an instantaneous uncut thickness (IUCT) model considering tool runout, a nonlinear shear/ploughing coefficient model including cutting-edge radius and a friction force coefficient model embedded with flank wear width, are constructed respectively. By integrating the IUCT, the nonlinear shear/ploughing coefficient and the friction force coefficient, a comprehensive micromilling force model including the tool runout, size effect and tool wear is derived. Experiment results show that the proposed comprehensive model is efficient to predict the micro milling force.


2014 ◽  
Vol 693 ◽  
pp. 358-363 ◽  
Author(s):  
Ladislav Kandráč ◽  
Ildikó Maňková ◽  
Marek Vrabeľ ◽  
Jozef Beňo ◽  
Jozef Stahovec ◽  
...  

FEM analysis was performed on design of experiment (DoE) according to Taguchi plan L9 (34). In order to overcome the machinability issues associated with machining of Ti-6Al-4V alloy, an attempt has been made in this study to observe the effect of friction coefficient, cutting speed, feed rate and cutting edge radius and on cutting force, temperature and power in 2D orthogonal cutting process supported through out with Third Wave Systems’ AdvantEdge. The comparison between the predicted cutting force, temperature and power at varying of friction coefficient, cutting speed, feed rate and cutting edge radius are presented and discussed. Evaluation of obtained results was processed by the statistical software Minitab 16.


2014 ◽  
Vol 602-605 ◽  
pp. 443-446
Author(s):  
Tao Zhang ◽  
Zhen Yu Shi ◽  
Bing Yan ◽  
Hou Jun Qi

Micro cutting is a promising way for manufacturing micro parts, especially micro three dimension parts. Micro hardness is an important character to evaluate surface integrity of machined surface. Micro cutting is different from macro cutting due to size effect of specific cutting energy because of the influence of the ratio of uncut chip thickness to cutting edge radius. A group of micro cutting experiments were conducted to investigate the cutting parameters on the micro hardness of machined surface. The micro hardness of machines surface decreases with the ratio of uncut chip thickness to cutting edge radius first, and then increase when the uncut chip thickness is smaller than the cutting edge radius. The micro hardness shows size effect due to the machined surface compressed twice with the round cutting edge. The micro hardness decreases with the distance increasing far away from the machined surface.


Author(s):  
Yang Li ◽  
Xiang Cheng ◽  
Siying Ling ◽  
Guangming Zheng ◽  
Huanbao Liu ◽  
...  

Previous studies found that the peripheral cutting edge and end cutting edge in micro end milling had different cutting phenomena considering the size effect in micro cutting processes. This paper is a further study on this point considering different workpiece materials and cutting edge radii. Finite element simulations have been conducted to determine the minimum undeformed chip thickness (MUCT) by the chip morphology and the results are verified by micromilling experiments. Both the simulations and experiments show that the MUCT of the peripheral cutting edge and the end cutting edge are different even if the cutting edge radii remain unchanged. The MUCT is directly proportional to the cutting edge radius. Material properties also have some effects on the MUCT of the peripheral cutting edge. But it has limited effects on that of the end cutting edge. The results indicate that the feed engagement other than the axial depth of cut should be carefully selected in micro end milling when considering different workpiece materials.


2021 ◽  
Vol 12 (1) ◽  
pp. 487-499
Author(s):  
Yang Li ◽  
Xiang Cheng ◽  
Guangming Zheng ◽  
Huanbao Liu

Abstract. Previous research has found that the peripheral and end cutting edges of the cutter had different cutting mechanisms in the micro end cutting process considering the size effect. This investigation is a further study on this point considering the cutting edge radius of the cutter and the material of the workpiece based on the methods of finite element simulation and the micro end cutting experiment. This study adopts a combination of simulation and experiment research methods and the cutting edge radius and the workpiece material as two variables. Considering the cutting mechanisms of the peripheral cutting edge and the end cutting edge are different, the peripheral cutting edge and the end cutting edge are studied respectively. Meanwhile, the minimum undeformed chip thickness (MUCT) value is determined in three ways, chip morphology, cutting force, and surface roughness, so the final result obtained by comparing three kinds of results has a very important reference value. Not only are the chip morphology obtained by finite element simulation and the surface roughness obtained by the micro end cutting experiment used to identify the MUCT value, but also the cutting force. The simulation and experimental results show that the cutting force can be used to identify the MUCT value for the peripheral cutting edge, but it cannot be used for the end cutting edge. The MUCT value increases with the increase of the cutting edge radius, no matter which process it is. The material property has some effects on the MUCT value; even the cutting parameters and the cutting edge radius remain unchanged for the peripheral cutting edge. However, the material property has no effect on the MUCT value for the end cutting edge. In this study, the influence of important variables on MUCT is studied as much as possible to reflect a real application situation.


Sign in / Sign up

Export Citation Format

Share Document