Surface Texture Generation using High-Feed Milling with Spindle Speed Modulation

Author(s):  
Fengqing Huang ◽  
Xiaoliang Jin
2012 ◽  
pp. 151-194
Author(s):  
Takashi Matsuyama ◽  
Shohei Nobuhara ◽  
Takeshi Takai ◽  
Tony Tung

2015 ◽  
Vol 789-790 ◽  
pp. 156-159 ◽  
Author(s):  
Tian Xing Sun ◽  
Ming Fang Chen ◽  
Qi Sun ◽  
Yong Xia Zhang

Elliptical vibration cutting is a new processing technology of work piece surface texture generation, the technique based on conventional cutting machine main movement and feed motion of the tool, by changing the structure so that the tip motion to generate ellipse trajectory. This paper designed incentive range vibration frequency as 20~40 KHz, can generate elliptical vibration trajectory in the small space of X/Z axis 16um. Tests prove that, the ultrasonic elliptic vibration cutting mechanism improves the specimen surface texture, smooth discharging of chipping, greatly improving the surface finishes of the work piece.


Author(s):  
Piotr Stȩpień

Most of the methods for generating regular surface texture (RST) consist of shaping a set of regular grooves (cavities) arranged in a regular way. This paper presents possibilities for regular surface texture generation by so-called “pattern grinding” with the wheel prepared in a special way. The simple variant of the method involves grinding with the wheel having helical grooves. The grooves shaped on the work material are the result of specific wheel surface reproduction. The ratio between work-material feed and wheel speed is an important factor, determining the layout of the grooves generated on the work-material and the shape of the groove sides. Surface texture consists of two components: deterministic, resulting from the nominal wheel active surface, and random, resulting from the random shape and arrangement of abrasive grains. The limited contribution of the random component of surface texture is discussed based on the ratio between the undeformed chip thickness and the sizes of the grooves. Kinematical analysis of the wheel reproduction process is performed for description of nominal surface texture. Experimental results of flat and cylindrical surfaces, obtained with pattern grinding are also provided. Two critical values of the ratio between work-material feed and wheel speed were derived, and three ranges of this ratio are discussed. The kinematical approach provided relationships between input data of the process (wheel shape and grinding parameters) and nominal groove dimensions and groove layout. The geometrical characteristics of the work-material nominal surface texture are presented for each of the three types of surface texture. It is important to ensure that the work feeds are greater than the lower critical value. For achievable work feeds the shape of the sides of the grooves is cycloid. Experiments revealed the limited contribution of the random component of the surface structure of the work material. Random arrangement of abrasive grains is important only at local (micro-) level and affects the roughness of groove bottoms, while the dimensions and arrangement of the grooves are affected only to a minimal degree.


2018 ◽  
Vol 1 (1) ◽  
pp. 76-81
Author(s):  
Firdaus Shazriq Mohd Fadzil ◽  
Nur Izzati Khoirunnisa Ismail ◽  
Nurrina Rosli

Application of cutting oil during machining process has been the most important contributor for the development of manufacturing sectors. There are many types of machining technologies developed with cutting oil supply system such as minimum quantity lubricant (MQL). With very little supply of lubricant, it can lengthen the cutting tool life and surface roughness of workpiece. Although the low consumption of lubricant is favourable, study on the performance of MQL machining process must be strengthened enough since the high penetration ability of very little amount of lubricant oil is important. Many researches have been carried out since decades ago to study the MQL performance. However, investigation on the effects on nozzle position have not been treated in much detail. Here, this paper is aimed to investigate the effects of nozzle distance to surface roughness of workpiece under MQL milling process. Experimental approach was done mainly under different nozzle distance varied in horizontal direction from the cutting tool. Other than that, the effects of feed rate and spindle speed to the surface roughness were also investigated. As a result, surface roughness increases with increasing feed rate. At lower operation of spindle speed, surface roughness rapidly increases with increasing feed rate compared to higher operated spindle speed. Operation under high feed rate leads to a decreasing surface roughness with increasing spindle speed. Milling under high feed rate for all conditions of nozzle distance can still give a great surface roughness for a workpiece, only if the spindle speed is increased. Surface roughness decreases with increasing distance of nozzle to workpiece in horizontal direction.


2004 ◽  
Vol 10 (12) ◽  
pp. 1835-1855 ◽  
Author(s):  
Tamas Insperger ◽  
Gabor Stepan

We investigate a single-degree-of-freedom model of turning with sinusoidal spindle speed modulation and the corresponding delay-differential equation with time-varying delay. The equation is analyzed by the numerical semidiscretization method. Stability charts and chatter frequencies are constructed. Improvement in the efficiency of machining is found for high modulation frequency and for low spindle speed domain. Period-one, period-two (flip), and secondary Hopf bifurcations were detected by eigenvalue analysis.


Sign in / Sign up

Export Citation Format

Share Document