Nitrogen removal from low carbon-to-nitrogen wastewater in four-stage biological aerated filter system

2008 ◽  
Vol 43 (7) ◽  
pp. 729-735 ◽  
Author(s):  
Hong-Duck Ryu ◽  
Daekeun Kim ◽  
Heun-Eun Lim ◽  
Sang-Ill Lee
2001 ◽  
Vol 43 (1) ◽  
pp. 269-276 ◽  
Author(s):  
N. Puznava ◽  
M. Payraudeau ◽  
D. Thornberg

The aim of this article is to present a new biological aerated filter (BAF) for nitrogen removal based on simultaneous nitrification and denitrification. Contrary to the systems which integrate both an aerated and a non-aerated zone to allow complete nitrogen removal in one compact or two different units (pre-denitrification and nitrification), this upflow BAF system is based on the principle of simultaneous nitrification and denitrification since the filter is completely aerated. The denitrification process is possible due to the diffusion effect which dominates biofilm processes. The real time aeration control allows us to maintain a low dissolved oxygen value (0.5 to 3 mg O2/l). In this case, the biofilm will not be fully (or less) penetrated with oxygen and denitrification will be carried out in a large part of the biofilm. Therefore, nitrification and denitrification is running simultaneously in different depths of the biofilm. By using 50% less air this BAF gave the same results (less than 20mg TN/l) on pilot plant as a classical nitrification and denitrification BAF (Toettrup et al., 1994). Less recirculation was necessary to achieve the same denitrification.


2013 ◽  
Vol 295-298 ◽  
pp. 1376-1379
Author(s):  
Lei Zhu ◽  
Fang Xing Liu ◽  
Xiao Lin Jiang ◽  
Hong Jiao Song

In this study, the alternating 3-stage biological aerated filter system with the brush as the filler was proposed for campus sewage treatment and the biofilm formation process was researched. Adopting the four-stage inoculated biofilm formation method, the treatment effects of the 3 filter columns respectively lasted 23d, 20d, 23d to reach stable. After the attached biofilm grew steadily, the effluent COD concentration was between 45 mg/L and 95 mg/L, and the removal efficiency was 77%~85%. The effluent NH4+-N concentration of 1st and 3rd filter columns was 11~25 mg/L, and the removal efficiency was 47%~67%; while the effluent NH4+-N concentration of 2nd filter column was 8 ~19 mg/L, the removal efficiency was 64%~ 78%.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 9-17 ◽  
Author(s):  
J.H. Ha ◽  
S.K. Ong

A 104-mm (4-inch) diameter pilot-scale biological aerated filter (BAF) with a media depth of 2.5 m (8.3 feet) was operated with an anaerobic, anoxic and oxic zone at a temperature of 23°C. The medium for the anaerobic and anoxic zones was 10 mm diameter sand while the medium for the oxic zone was 5 mm diameter sand. The influent sCOD and total nitrogen concentrations in the feedwater were approximately 250 mg/L and 35 mg N/L, respectively. sCOD removal at optimum hydraulic retention time (HRT) of 3 h with recirculation rates of 100, 200 and 300% in the column was above 96%. Nitrification was found to be more than 96% for 3 h HRT at 200 and 300% recirculation. Total nitrogen removal was consistent at more than 80% for 4 and 6 h HRT at 300% recirculation. For 3 h HRT and 300% recirculation, total nitrogen removal was approximately 79%. The ammonia loading rates for maximum ammonia removed were 0.15 and 0.19 kg NH3-N/m3-day for 100 and 200% recirculation, respectively. The experimental results demonstrated that the BAF can be operated at an HRT of 3 h with 200–300% recirculation rates with more than 96% removal of sCOD and ammonia and at least 75% removal of total nitrogen.


Sign in / Sign up

Export Citation Format

Share Document