Ratchet mechanism of drops climbing a vibrated oblique plate

2017 ◽  
Vol 835 ◽  
Author(s):  
Hang Ding ◽  
Xi Zhu ◽  
Peng Gao ◽  
Xi-Yun Lu

In this paper, we investigate the ratchet mechanism of drops climbing a vibrated oblique plate based on three-dimensional direct numerical simulations, which for the first time reproduce the existing experiment (Brunet et al., Phys. Rev. Lett., vol. 99, 2007, 144501). With the help of numerical simulations, we identify an interesting and important wetting behaviour of the climbing drop; that is, the breaking of symmetry due to the inclination of the plate with respect to the acceleration leads to a hysteresis of the wetted area in one period of harmonic vibration. In particular, the average wetted area in the downhill stage is larger than that in the uphill stage, which is found to be responsible for the uphill net motion of the drop. A new hydrodynamic model is proposed to interpret the ratchet mechanism, taking account of the effects of the acceleration and contact angle hysteresis. The predictions of the theoretical analysis are in good agreement with the numerical results.

2004 ◽  
Vol 38 ◽  
pp. 379-383 ◽  
Author(s):  
Jocelyn Étienne ◽  
Pierre Saramito ◽  
Emil J. Hopfinger

AbstractIn this paper, two-dimensional direct numerical simulations (DNS) of dense clouds moving down steep slopes are presented for the first time. The results obtained are in good agreement with the overall characteristics, i.e. the spatial growth rate and velocity variations, of clouds studied in the laboratory. In addition to the overall flow structure, DNS provide local density and velocity variations inside the cloud, not easily accessible in experiments. The validity of two-dimensional simulations as a first approach is confirmed by the dynamics of the flow and by comparison with experimental results. The interest of the results for powder-snow avalanches is discussed; it is concluded that two-dimensionality is acceptable and that large density differences need to be taken into account in future simulations.


2020 ◽  
Vol 8 (10) ◽  
pp. 756
Author(s):  
Ameen Topa ◽  
Burak Can Cerik ◽  
Do Kyun Kim

The development of numerical simulations is potentially useful in predicting the most suitable manufacturing processes and ultimately improving product quality. Seamless pipes are manufactured by a rotary piercing process in which round billets (workpiece) are fed between two rolls and pierced by a stationary plug. During this process, the material undergoes severe deformation which renders it impractical to be modelled and analysed with conventional finite element methods. In this paper, three-dimensional numerical simulations of the piercing process are performed with an arbitrary Lagrangian–Eulerian (ALE) formulation in LS-DYNA software. Details about the material model as well as the elements’ formulations are elaborated here, and mesh sensitivity analysis was performed. The results of the numerical simulations are in good agreement with experimental data found in the literature and the validity of the analysis method is confirmed. The effects of varying workpiece velocity, process temperature, and wall thickness on the maximum stress levels of the product material/pipes are investigated by performing simulations of sixty scenarios. Three-dimensional surface plots are generated which can be utilized to predict the maximum stress value at any given combination of the three parameters.


1993 ◽  
Vol 256 ◽  
pp. 615-646 ◽  
Author(s):  
Paolo Orlandi ◽  
Roberto Verzicco

Accurate numerical simulations of vortex rings impinging on flat boundaries revealed the same features observed in experiments. The results for the impact with a free-slip wall compared very well with previous numerical simulations that used spectral methods, and were also in qualitative agreement with experiments. The present simulation is mainly devoted to studying the more realistic case of rings interacting with a no-slip wall, experimentally studied by Walker et al. (1987). All the Reynolds numbers studied showed a very good agreement between experiments and simulations, and, at Rev > 1000 the ejection of a new ring from the wall was seen. Axisymmetric simulations demonstrated that vortex pairing is the physical mechanism producing the ejection of the new ring. Three-dimensional simulations were also performed to investigate the effects of azimuthal instabilities. These simulations have confirmed that high-wavenumber instabilities originate in the compression phase of the secondary ring within the primary one. The large instability of the secondary ring has been explained by analysis of the rate-of-strain tensor and vorticity alignment. The differences between passive scalars and the vorticity field have been also investigated.


2008 ◽  
Vol 602 ◽  
pp. 175-207 ◽  
Author(s):  
L. E. JONES ◽  
R. D. SANDBERG ◽  
N. D. SANDHAM

Direct numerical simulations (DNS) of laminar separation bubbles on a NACA-0012 airfoil at Rec=5×104 and incidence 5° are presented. Initially volume forcing is introduced in order to promote transition to turbulence. After obtaining sufficient data from this forced case, the explicitly added disturbances are removed and the simulation run further. With no forcing the turbulence is observed to self-sustain, with increased turbulence intensity in the reattachment region. A comparison of the forced and unforced cases shows that the forcing improves the aerodynamic performance whilst requiring little energy input. Classical linear stability analysis is performed upon the time-averaged flow field; however no absolute instability is observed that could explain the presence of self-sustaining turbulence. Finally, a series of simplified DNS are presented that illustrate a three-dimensional absolute instability of the two-dimensional vortex shedding that occurs naturally. Three-dimensional perturbations are amplified in the braid region of developing vortices, and subsequently convected upstream by local regions of reverse flow, within which the upstream velocity magnitude greatly exceeds that of the time-average. The perturbations are convected into the braid region of the next developing vortex, where they are amplified further, hence the cycle repeats with increasing amplitude. The fact that this transition process is independent of upstream disturbances has implications for modelling separation bubbles.


2010 ◽  
Vol 660 ◽  
pp. 1-4 ◽  
Author(s):  
B. STEVENS

Mixing processes at cloud boundaries are thought to play a critical role in determining cloud lifetime, spatial extent and cloud microphysical structure. High-fidelity direct numerical simulations by Mellado (J. Fluid Mech., 2010, this issue, vol. 660, pp. 5–36) show, for the first time, the character and potency of a curious instability that may arise as a result of molecular mixing processes at cloud boundaries, an instability which until now has been thought by many to control the distribution of climatologically important cloud regimes.


Author(s):  
Joshua R. Brinkerhoff ◽  
Metin I. Yaras

This paper describes numerical simulations of the instability mechanisms in a separation bubble subjected to a three-dimensional freestream pressure distribution. Two direct numerical simulations are performed of a separation bubble with laminar separation and turbulent reattachment under low freestream turbulence at flow Reynolds numbers and streamwise pressure distributions that approximate the conditions encountered on the suction side of typical low-pressure gas-turbine blades with blade sweep angles of 0° and 45°. The three-dimensional pressure field in the swept configuration produces a crossflow-velocity component in the laminar boundary layer upstream of the separation point that is unstable to a crossflow instability mode. The simulation results show that crossflow instability does not play a role in the development of the boundary layer upstream of separation. An increase in the amplification rate and most amplified disturbance frequency is observed in the separated-flow region of the swept configuration, and is attributed to boundary-layer conditions at the point of separation that are modified by the spanwise pressure gradient. This results in a slight upstream movement of the location where the shear layer breaks down to small-scale turbulence and modifies the turbulent mixing of the separated shear layer to yield a downstream shift in the time-averaged reattachment location. The results demonstrate that although crossflow instability does not appear to have a noticeable effect on the development of the transitional separation bubble, the 3D pressure field does indirectly alter the separation-bubble development by modifying the flow conditions at separation.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kumar Subramanian ◽  
Günter Wozny

Modelling of the hydrodynamics behaviour of the liquid on the corrugated sheets of packing is studied using three-dimensional, volume-of-fluid (VOF) model that is incorporated in Ansys Fluent 12.0. The flow of three different liquids with different physical properties is modelled. A domain of corrugated sheets of packing resembling the real structured packing with little modifications in the elementary geometry is constructed using ICEM CFD 12.0. The quantitative comparisons of the wetting behavior from the simulations are in good agreement with experiments. Further, the study has been extended to understand the influence of the second corrugated sheet on the flow behavior. The contours from the simulations indicate the liquid hold-up in the crimp of two corrugated sheets, and these results are in good agreement with the earlier experimental studies performed using X-ray tomography in the literature. The result from the simulation shows that even for the high flow rate of around 811 mL/min for silicon-oil (DC5), only 60% of the corrugated sheet has been wetted. Hence, the efficiency of the existing packing can be further increased by increasing the wetted area in the corrugated sheet of packing.


Sign in / Sign up

Export Citation Format

Share Document