scholarly journals Experimental Research on the Electrochemical Machining of Modern Titanium- and Nickel-based Alloys for Aero Engine Components

Procedia CIRP ◽  
2013 ◽  
Vol 6 ◽  
pp. 368-372 ◽  
Author(s):  
F. Klocke ◽  
M. Zeis ◽  
A. Klink ◽  
D. Veselovac
2016 ◽  
Vol 29 (1) ◽  
pp. 274-282 ◽  
Author(s):  
Xuezhen Chen ◽  
Zhengyang Xu ◽  
Dong Zhu ◽  
Zhongdong Fang ◽  
Di Zhu

2017 ◽  
Author(s):  
Zhigang Wang

The water guided laser micro-jet (LMJ) is a new potential method to machine aero engine parts with much less heat affected area and faster cutting speed than dry laser machining. The focus of this paper is to investigate the energy density and material removal for a dual-laser LMJ system. Then, the effects of dominated parameters on the energy density of LMJ are analyzed. Finally, a mathematical model is developed to describe the relationship between dominant laser parameters with the energy density of LMJ and material removal rate followed by machining case studies of aero engine components.


2017 ◽  
Vol 870 ◽  
pp. 459-464 ◽  
Author(s):  
Chuan Zhi Sun ◽  
Lei Wang ◽  
Jiu Bin Tan ◽  
Bo Zhao ◽  
Guo Liang Jin ◽  
...  

This paper aims to provide an assembly method to improve mechanical assembly quality. In order to improve the variation propagation control in rotationally symmetric cylindrical components assembly, the eccentric and tilt errors of a single rotor stage were taken into account using a connective assembly model and the eccentric deviation in a mechanical assembly was minimized by properly selecting component orientations. Compared to the minimum cumulative error, the maximum cumulative error was reduced by 71 percent, and the average cumulative error was reduced by 57 percent in the assembly of three components. This article provides an assembly method through variation propagation control in rotationally symmetric cylindrical components assembly. The method could be extended to rotationally symmetric cylindrical components assembly, for example in the assembly of aero-engine components.


2017 ◽  
Vol 97 ◽  
pp. 177-189 ◽  
Author(s):  
M.A. Cuddihy ◽  
A. Stapleton ◽  
S. Williams ◽  
F.P.E. Dunne

2021 ◽  
Author(s):  
Zhenghui Ge ◽  
Wangwang Chen ◽  
Yongwei Zhu

Abstract Casing parts are regarded as one of the key components in aero-engine components. Most casing parts are attached with different shapes of convex structures, and their heights range from hundreds of microns to tens of millimeters. The use of profiling blocky electrodes for electrochemical machining of casing parts is a widely used method, especially in the processing of high convex structures. However, with the increase of convex structure height, the flow field of machining areas will become more complex, and short circuits may occur at any time. In this study, a method to improve the flow field characteristics of machining area by adjusting the backwater pressure is proposed, the simulation and experiment are carried out respectively. The simulation results showed that the back-pressure mehtod can significantly improve the uniformity of the flow field around the convex structure compared with the extraction outlet mode and the open outlet mode, and then the optimized back-pressure of 0.5 MPa was obtained according to simulation results. The experimental results showed that under condition of the optimized back-pressure parameters, the cathode feed-rate increased from 0.6 mm/min to 0.8 mm/min, and the convex structure with a height of 18 mm was successfully machined. This indicated that the back-pressure method is suitable and effective for the electrochemical machining of high convex structure with blocky electrode.


Author(s):  
Caetano Peng

This paper highlights some engine non-linearities that can affect both performance and robustness of aero engines. It pays particular attention to non-linearities generated at the stator vane contact end joints. These non-linearities resulting from friction contact joints affect the vane modeshapes, damping and forced response. This work proposes upper and lower bound solutions based on vane end restraints non-linearities to predict conservative forced response of stator vanes. Some non-linearities such as those caused by mistuning can be beneficial to the component and system. There are also non-linearities that can be detrimental to engine performance, robustness and reliability. Moreover, it proposes and discusses the concept of temporal HCF or CCF lifing method. Recent developments in FE, CFD, mistuning, forced response and probabilistic codes can help to create more integrated design tools that incorporate time-dependent non-linearities in the lifing of aero engine components. Computations performed here demonstrated some level of component virtual testing. These analyses are important component virtual testing that will be gradually extended to whole aero engine virtual testing.


Sign in / Sign up

Export Citation Format

Share Document