scholarly journals Method for Configuring Product and Order Flexible Assembly Lines in the Automotive Industry

Procedia CIRP ◽  
2016 ◽  
Vol 54 ◽  
pp. 215-220 ◽  
Author(s):  
Christian Küber ◽  
Engelbert Westkämper ◽  
Bernd Keller ◽  
Hans-Friedrich Jacobi
1999 ◽  
Vol 121 (3) ◽  
pp. 478-484 ◽  
Author(s):  
Jinkoo Lee ◽  
S. Jack Hu ◽  
Allen C. Ward

Fixtures are used to position and hold parts for a series of assembly operations. In automotive body assembly, these fixtures conventionally have been dedicated, therefore they must be replaced whenever there are model changes in an auto body assembly plant. In recent years, however, the automotive industry has been changing from high volume to small-to-medium volume production per model with an increasing number of models because customer tastes are diversifying. To cope with this change, auto companies need to be capable of producing a variety of models in small-to-medium volume, and they rely on flexible assembly lines and flexible fixtures. These flexible fixtures use robots as programmable fixture elements so that they can be reprogrammed for different stamped sheet metal parts. When designing flexible fixtures, fixture designers need to be concerned with fixture workspaces for a set of different stampings. However, existing fixture design methods address the fixturing of one stamping only. This paper presents a system that fixture designers can use to synthesize flexible fixture workspaces for a set of different stampings. Based on circular workspaces for flexible fixture robots, this system finds optimal workspace sizes and centers on a fixture base plate with a graphical display for visual checking. This system is simple to use and produces results quickly.


2021 ◽  
Vol 11 (10) ◽  
pp. 4620
Author(s):  
Niki Kousi ◽  
Christos Gkournelos ◽  
Sotiris Aivaliotis ◽  
Konstantinos Lotsaris ◽  
Angelos Christos Bavelos ◽  
...  

This paper discusses a digital twin-based approach for designing and redesigning flexible assembly systems. The digital twin allows modeling the parameters of the production system at different levels including assembly process, production station, and line level. The approach allows dynamically updating the digital twin in runtime, synthesizing data from multiple 2D–3D sensors in order to have up-to-date information about the actual production process. The model integrates both geometrical information and semantics. The model is used in combination with an artificial intelligence logic in order to derive alternative configurations of the production system. The overall approach is discussed with the help of a case study coming from the automotive industry. The case study introduces a production system integrating humans and autonomous mobile dual arm workers.


CIRP Annals ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 441-446 ◽  
Author(s):  
Marcello Colledani ◽  
Dávid Gyulai ◽  
László Monostori ◽  
Marcello Urgo ◽  
Johannes Unglert ◽  
...  

2018 ◽  
Vol 218 ◽  
pp. 04028
Author(s):  
Inaki Maulida Hakim ◽  
Syarafi Auzan Mu’min ◽  
Rolina Oktapiani Zaqiah

In this modern era, the competition among the manufacturing industry, especially in the automotive sector will become increasingly tight which causes companies need to innovate so that satisfaction of the consumer can be maintained. The production process will be an important aspect in the automotive industry to maintain the quality of products and ensure consumer demand can be fulfilled. The problems that often occur in the production process is in the form of production flow constraints caused by workload unbalanced in the assembly lines. The imbalance causes the assembly lines do not run in a cycle time that is determined, so that consumer demand can not be meet in the right amount and companies need to spend more to mitigate them. Therefore, this study was conducted to balance workload on the assembly line by using line balancing form Ranked Positional Weight (RPW) with a subsequent increase in the efficiency and productivity of assembly line that affect production process runs without any contraints.


2017 ◽  
Vol 11 ◽  
pp. 1035-1042 ◽  
Author(s):  
Conceição Rosa ◽  
F.J.G. Silva ◽  
Luís Pinto Ferreira

Author(s):  
Peter Dobra ◽  
János Jósvai

Manufacturing companies continuously evaluate their achieved performance based on different Key Performance Indicators (KPI). This article gives an overview about the OEE values. The study aims to provide practical OEE data of semi-automatic assembly lines used in the automotive industry. Its novelty is the revealed relationship between seat assembly lines and seat subassembly lines. Firstly, a literature review shows the scientific relevance and several cases are collected to increase OEE percentage. Secondly, the connection between chassis, tracks, recliner and mechanism assembly lines is described. Each part of OEE (availability, performance, quality) are analysed in terms of their impact.


Sign in / Sign up

Export Citation Format

Share Document