scholarly journals Experimental and Numerical Analysis of the Depth of the Strengthened Layer on Shafts Resulting from Roller Burnishing with Roller Braking Moment

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5844
Author(s):  
Marek Kowalik ◽  
Tomasz Trzepieciński ◽  
Leon Kukiełka ◽  
Piotr Paszta ◽  
Paweł Maciąg ◽  
...  

The article presents the results of investigations into the depth of the plastically deformed surface layer in the roller burnishing process. The investigation was carried out in order to obtain information on the dependence relationship between the depth of plastic deformation, the pressure on the roller and the braking torque. The research was carried out according to the original method developed by the authors, in which the depth of plastic deformation is increased by applying a braking torque to the burnishing roller. In this method, it is possible to significantly increase (up to 20%) the depth of plastic deformation of the surface layer. The tests were carried out on a specially designed device on which the braking torque can be set and the force of the rolling resistance of the roller during burnishing can be measured. The tests were carried out on specimens made of C45 heat-treatable carbon steel. The dependence of the depth of the plastically deformed surface layer was determined for a given pressure force and variable braking moments. The depth of the plastically deformed layer was measured on the deformed end face of the ring-shaped samples. The microhardness in the sample cross-section and the evolution of the microstructure were both analysed.

2019 ◽  
Vol 290 ◽  
pp. 03008
Author(s):  
Marek Kowalik ◽  
Tomasz Trzepiecinski

This paper presents the methods of experimental determining the depth of the plastically deformed top layer in the roller burnishing process. Precise determination of the depth of the plastically deformed layer is difficult due to slight deformation at the boundary of the plastic and elastic zone, the lack of visible changes in the microstructure, and minimal changes in microhardness. The article shows the method of original measurement method that consists in determining the thickness of the deformed layer using rings. The method involves the profilographometric measurements of the disconnected rings (samples) which are flat-faced in the package on the mandrel. The rings material deforms plastically in the surface layer causing wrapping of the end face of the ring in the direction of the rolling tool movement. After dismantling the ring pack, measurements were made on the face of each ring along radial directions, and the thickness of the deformed layer was observed on the microscope. The method was verified by microhardness measurements in the cross-section and cross-section of the ring. The results of deformation depth measurements were verified by finite-element-based numerical simulation.


2015 ◽  
Vol 55 (5) ◽  
pp. 347 ◽  
Author(s):  
Oskar Zemčík ◽  
Josef Sedlák ◽  
Josef Chladil

<p>This paper describes changes observed in bearing steel due to roller burnishing. Hydrostatic roller burnishing was selected as the most suitable method for performing roller burnishing on hardened bearing steel. The hydrostatic roller burnishing operation was applied as an additional operation after standard finishing operations. All tests were performed on samples of 100Cr6 material (EN 10132-4), and changes in the surface layer of the workpiece were then evaluated. Several simulations using finite element methods were used to obtain the best possible default parameters for the tests. The residual stress and the plastic deformation during roller burnishing were major parameters that were tested.</p>


2017 ◽  
Vol 746 ◽  
pp. 290-295 ◽  
Author(s):  
Aleksei Nicolaevich Shvetcov ◽  
Dmitrii Leonidovich Skuratov

The article shows the results of experimental investigation influence of process conditions on parameters, defining plastic deformation, during diamond burnishing process: maximum of micro-hardness and depth of hardened layer (depth of workhardening). Empirical dependences, linking the maximum of micro-hardness and depth of workhardening to the diamond burnishing process parameters, were obtained on the base of the experimental investigation.


2018 ◽  
Vol 50 (3) ◽  
pp. 493-503 ◽  
Author(s):  
M. Kowalik ◽  
T. Mazur ◽  
T. Trzepiecinski

2018 ◽  
Vol 767 ◽  
pp. 93-100
Author(s):  
Fritz Klocke ◽  
Anton Shirobokov ◽  
Rafael Hild ◽  
Andreas Feuerhack ◽  
Daniel Trauth ◽  
...  

Deep rolling is an established mechanical surface treatment technology based on local plastic deformation of the surface layer. By these means, residual stresses, and strain hardening are induced into the surface layer as well as its surface structure is smoothed. Vibrorolling is a derivate technology of deep rolling characterized by sinusoidal rolling lanes. Due to process kinematics of vibrorolling the surface layer is incrementally deformed multiple times in different directions. As a result, a more intensive plastic deformation of the surface layer is achieved and potentially tribologically active surface structures are produced. To investigate and compare the effects of both surface treatment technologies on the tribological behavior of a processed component, a friction and wear analysis under lubricated conditions was conducted in this work. Friction and wear behavior of untreated, deep rolled, and vibrorolled specimens using a pin-on-cylinder tribometer was conducted. Hardness, roughness, and geometrical measurements of the wear traces were used to characterize the specimens. Additionally, qualitative assessments of the wear traces using scanning electron microscopy imaging were made. The measurements were performed before, during, and after the friction and wear analysis. Furthermore, contact forces between a tribometer pin and the workpiece were determined to analyze the development of contact shear stresses. Based on the conducted investigations, the effects of deep rolling and vibrorolling on the friction and wear behavior of the treated specimens are discussed and explanations for the observed phenomena are formulated in this work.


2010 ◽  
Vol 25 (3) ◽  
pp. 176-180
Author(s):  
K. O. Low ◽  
N. S. M. El-Tayeb ◽  
P. V. Brevern

Sign in / Sign up

Export Citation Format

Share Document