scholarly journals An Automated Method for Assembly Tolerance Analysis

Procedia CIRP ◽  
2020 ◽  
Vol 92 ◽  
pp. 57-62
Author(s):  
Yuguang Wu
Author(s):  
R. T. Scott ◽  
G. A. Gabriele

Abstract An exact constraint scheme based on the physical contacting constraints of real part mating features is used to represent the process of assembling the parts. To provide useful probability information about how assembly dimensions are distributed when the parts are assembled as intended, the real world constraints that would prevent interference are ignored. This work addresses some limitations in the area of three dimensional assembly tolerance analysis. As a result of this work, the following were demonstrated: 1. Assembly of parts whose assembly mating features are subjected to variation; 2. Assemble parts using a real world set of exact constraints; 3. Provide probability distributions of assembly dimensions.


1987 ◽  
Vol 109 (2) ◽  
pp. 112-116 ◽  
Author(s):  
W. H. Greenwood ◽  
K. W. Chase

Even when all manufactured parts for an assembly are produced within limits, these parts still may not assemble properly if the assembly tolerance analysis was inadequately performed. Naturally occurring shifts in a process can produce biased distributions which can result in increased assembly problems and a greater number of rejects than anticipated. The most common methods of analysis of assembly tolerance buildup are worst case and root sum squares. The limitations of each of these methods are discussed and a simple new method is proposed which accounts for expected bias. This new method includes both worst case and root sum squares as extreme cases.


Author(s):  
Hua Wang ◽  
Yujin Lin ◽  
Chen Yan

Abstract Clamping force and shimming are two important compensation processes in the composites assembly. Their effects on variation propagation should be investigated in tolerance analysis. The paper presents a tolerance analysis method for composites assembly based on the T-Maps method, mainly concerning the anisotropic variations accumulation and propagation where there is the clamping force modification and the shimming. Variations of the composite parts in different directions are represented by the T-Maps. Since the different axial deviations are represented in the same Euclidean point-space, the T-Maps based tolerance analysis of the composite parts assembly provides more accurate and reliable results. Compensation processes, the clamping force, and the shimming, on assembly tolerance synthesis of the composite parts, are analyzed clearly in the T-Map. This procedure is found to be effective for the anisotropy oriented assembly tolerance analysis, especially concerning about effect of the clamping force and the shimming on variations accumulation and propagation. The assembly of an aircraft composite elevator is considered to demonstrate the effectiveness of the T-Maps based method. The procedures outlined in the paper are quite general and can be used for assembly tolerance analysis of anisotropic parts.


2010 ◽  
Vol 139-141 ◽  
pp. 1289-1293 ◽  
Author(s):  
Dong Ya Yang ◽  
Jun Gong

A comprehensive tolerancing system is presented with its design principle, system architecture and key functions. The following functional modules, automatic generation of dimension chain, equivalent variational mechanism (EVM) modeling and visualized 3D tolerance analysis, are described in detail. Design intent is expressed by assembly tolerance specifications, which may be added to the model and used in computing predicted quality levels. A comprehensive method, based on equivalent replacement, has been developed for modeling variations in 3D mechanical assemblies. The models are constructed of common engineering elements: dimension chain, kinematic joints, assembly datums, dimensional and geometric feature tolerances, and assembly tolerance limits. The method is consistent with engineering design practice and is well suited for integration with commercial CAD systems. To make the tolerancing system robust and efficient, new functionalities are added to well-known CAD software and simulation environment. Tested by many samples, this system shows good robustness and practicability.


2011 ◽  
Vol 275 ◽  
pp. 69-72 ◽  
Author(s):  
Chen Song Dong ◽  
Lu Kang

Compliant components such as large sheet metal components are commonly used in various products including automotive, aircraft and home appliances. Because of part-to-part variations, deformation and stresses are induced in the assembly process. An approach to the assembly tolerance analysis of compliant structures is presented in this paper. Given component deformation, assembly deformation and stresses are derived by finite element analysis (FEA). The influence of component deformation on assembly deformation and stresses is studied by response surface methodology (RSM), and a regression model is developed. Using the developed regression model, Monte Carlo simulation was conducted to study assembly tolerance and stresses. This approach is illustrated by an example.


2020 ◽  
Vol 14 (3) ◽  
pp. 265-272
Author(s):  
Živko Kondić ◽  
Đuro Tunjić ◽  
Leon Maglić ◽  
Amalija Horvatić Novak

The determination of tolerances has a huge impact on the price and quality of products. The objective of tolerance analysis is to provide the widest possible tolerance range of parts, without disturbing the functionality of the assembly. Tolerance analysis should be performed during the design process because then there is still the possibility for change. For the purpose of carrying out the analysis, three methods will be used: Worst Case method, Root Sum Square method and Monte Carlo Simulation. Methods are explained through simple examples and applied on the one-way clutch.


2011 ◽  
Vol 201-203 ◽  
pp. 229-233
Author(s):  
Dong Ya Yang ◽  
Jun Gong

This paper introduces a new, visualized approach for including all the geometric feature variations in the tolerance analysis of mechanical assemblies. It focuses on how to characterize geometric feature variations in vector-loop-based assembly tolerance models. The characterization will be used to help combine the effects of all variations within an assembly in order to perform tolerance analysis of mechanical assemblies by employing commercial 3D kinematic software (e.g. ADAMS). Equivalent variational modeling, based on TAKS method, has been developed for modeling variations in 3D mechanical assemblies. Create a library of Equivalent Variational Joints (EVJs) to allow inclusion all kinds of variations in analysis, and allow the kinematic model to include both geometric and dimensional variation in a velocity analysis. EVJ, for use in tolerance analysis, was developed for commonly used 3D kinematic joint types, and was implemented with examples to explain their use to form Equivalent Variational Mechanisms (EVMs).


Sign in / Sign up

Export Citation Format

Share Document