scholarly journals An approach to point-to-point reconstruction of 3D structure of coronary arteries from 2D X-ray angiography, based on epipolar constraints

2018 ◽  
Vol 136 ◽  
pp. 380-389
Author(s):  
Mariia Kalmykova ◽  
Alexey Poyda ◽  
Viacheslav Ilyin
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jerome Carnis ◽  
Felizitas Kirner ◽  
Dmitry Lapkin ◽  
Sebastian Sturm ◽  
Young Yong Kim ◽  
...  

Mesocrystals are nanostructured materials consisting of individual nanocrystals having a preferred crystallographic orientation. On mesoscopic length scales, the properties of mesocrystals are strongly affected by structural heterogeneity. Here, we report...


IUCrJ ◽  
2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Hiroyuki Iwamoto

X-ray fiber diffraction is potentially a powerful technique to study the structure of fibrous materials, such as DNA and synthetic polymers. However, only rotationally averaged diffraction patterns can be recorded and it is difficult to correctly interpret them without the knowledge of esoteric diffraction theories. Here we demonstrate that, in principle, the non-rotationally averaged 3D structure of a fibrous material can be restored from its fiber diffraction pattern. The method is a simple puzzle-solving process and in ideal cases it does not require any prior knowledge about the structure, such as helical symmetry. We believe that the proposed method has a potential to transform the fiber diffraction to a 3D imaging technique, and will be useful for a wide field of life and materials sciences.


Sign in / Sign up

Export Citation Format

Share Document