scholarly journals Influence of the Mode Mixity Ratio and Test Procedures on the Total Energy Release Rate in Carbon-Epoxy Laminates

2011 ◽  
Vol 10 ◽  
pp. 953-958 ◽  
Author(s):  
V. Mollón ◽  
J. Viña ◽  
A. Argüelles ◽  
J. Bonhomme ◽  
I. Viña
2007 ◽  
Vol 74 (6) ◽  
pp. 1197-1211 ◽  
Author(s):  
H. Jelitto ◽  
F. Felten ◽  
M. V. Swain ◽  
H. Balke ◽  
G. A. Schneider

Four-point-bending V-notched specimens of lead zirconate titanate (PZT) poled parallel to the long axis are fractured under conditions of controlled crack growth in a custom-made device. In addition to the mechanical loading electric fields, up to 500V∕mm are applied parallel and anti-parallel to the poling direction, i.e., perpendicular to the crack surface. To determine the different contributions to the total energy release rate, the mechanical and the piezoelectric compliance, as well as the electrical capacitance of the sample, are recorded continuously using small signal modulation/demodulation techniques. This allows for the calculation of the mechanical, the piezoelectric, and the electrical part of the total energy release rate due to linear processes. The sum of these linear contributions during controlled crack growth is attributed to the intrinsic toughness of the material. The nonlinear part of the total energy release rate is mostly associated to domain switching leading to a switching zone around the crack tip. The measured force-displacement curve, together with the modulation technique, enables us to determine this mechanical nonlinear contribution to the overall toughness of PZT. The intrinsic material toughness is only slightly dependent on the applied electric field (10% effect), which can be explained by screening charges or electrical breakdown in the crack interior. The part of the toughness due to inelastic processes increases from negative to positive electric fields by up to 100%. For the corresponding nonlinear electric energy change during crack growth, only a rough estimate is performed.


1995 ◽  
Vol 62 (2) ◽  
pp. 294-305 ◽  
Author(s):  
B. D. Davidson ◽  
Hurang Hu ◽  
R. A. Schapery

A previously developed linear elastic crack-tip element analysis is reviewed briefly, and then extended and refined for practical applications. The element provides analytical expressions for total energy release rate and mode mix in terms of plate theory force and moment resultants near the crack tip. The element may be used for cracks within or between homogeneous isotropic or orthotropic layers, as well as for delamination of laminated composites. Classical plate theory is used to derive the equations for total energy release rate and mode mix; a “mode mix parameter,” Ω, as obtained from a separate continuum analysis is necessary to complete the mode mix decomposition. This parameter depends upon the elastic and geometrical properties of the materials above and below the crack plane, but not on the loading. A relatively simple finite element technique for determining the mode-mix parameter is presented and convergence in terms of mesh refinement is studied. Specific values of Ω are also presented for a large number of cases. For those interfaces where a linear elastic solution predicts an oscillatory singularity, an approach is described which allows a unique, physically meaningful value of fracture mode ratio to be defined. This approach is shown to provide predictions of crack growth between dissimilar homogeneous materials that are equivalent to those obtained from the oscillatory field solution. Application of the approach to delamination in fiber-reinforced laminated composites is also discussed.


2011 ◽  
Vol 462-463 ◽  
pp. 616-621 ◽  
Author(s):  
Simon Wang ◽  
Christ Harvey

Taking a double cantilever beam (DCB) as a representative of one dimensional fracture, a unique pair of pure fracture modes I and II are successfully found in the absence of axial forces, which are orthogonal to each other with respect to the coefficient matrix of the energy release rate. Although the pair are pure modes there still exist interactions between them. The interactions result in energy flow between the two modes and are successfully determined. With the presence of axial forces, there are two independent pure modes I and two independent pure modes II, which are orthogonal to each other as well. They are found and used to partition the total energy release rate.


Author(s):  
K. Tanaka ◽  
K. Oharada ◽  
D. Yamada ◽  
K. Shimizu

The influence of fiber orientation on the crack propagation behavior was studied with single edgenotched specimens which were cut from an injection-molded plate of short-fiber reinforced plastics of polyphenylenesulphide (PPS) reinforced with 30wt% carbon fibers. Specimens were cut at five fiber angles relative to the molding direction, i.e. ??= 0° (MD), 22.5°, 45°, 67.5°, 90° (TD). Fracture mechanics parameters derived based on anisotropic elasticity were used as a crack driving force. Macroscopic crack propagation path was nearly perpendicular to the loading axis for the cases of MD and TD. For the other fiber angles, the crack path was inclined because the crack tended to propagate along inclined fibers. For mode I crack propagation in MD and TD, the resistance to crack propagation is improved by fiber reinforcement, when the rate is correlated to the range of stress intensity factor. The crack propagation rate, da/dN, was slowest for MD and fastest for TD. For each material, the crack propagation rate is higher for larger R ratio. The effect of R ratio on da/dN diminished in the relation between da/dN and the range of energy release rate, ?GI. Difference among MD, TD and matrix resin becomes small when da/dN correlated to a parameter corresponding the crack-tip radius, H?GI, where H is compliance parameter. Fatigue cracks propagated under mixed loading of mode I and II for the fiber angles other than 0° and 90°. The data of the crack propagation rate correlated to the range of total energy release rate, ?Gtotal, lie between the relations obtained for MD and TD. All data of crack propagation tend to merge a single relation when the rate is correlated to the range of total energy release rate divided by Young’s modulus.


2016 ◽  
Vol 51 (5) ◽  
pp. 623-635 ◽  
Author(s):  
M Naghinejad ◽  
H R Ovesy

In the present article, the variational energy principle is used to derive the expression for energy release rate in buckled composite laminate containing through-the-width delamination, subjected to in-plane strains. Boundary conditions are clamped at both edges. Buckling and post-buckling solutions are obtained and expressions for critical buckling load and post-buckling deflection have been developed. A through-the-width delamination model has been considered and formulations are based on higher order shear deformation theory. The effects of considering the higher order shear deformation theory on equivalent bending rigidity, buckling load, and energy release rate have been investigated. Finally, the results of current study have been compared with the results of finite element method analysis by Abaqus/CAE and those available in the literature.


2018 ◽  
Vol 52 (18) ◽  
pp. 2537-2547 ◽  
Author(s):  
Vishnu Saseendran ◽  
Leif A Carlsson ◽  
Christian Berggreen

Foundation effects play a crucial role in sandwich fracture specimens with a soft core. Accurate estimation of deformation characteristics at the crack front is vital in understanding compliance, energy release rate and mode-mixity in fracture test specimens. Beam on elastic foundation analysis of moment- and force-loaded single cantilever beam sandwich fracture specimens is presented here. In addition, finite element analysis of the single cantilever beam specimen is conducted to determine displacements, rotations, energy release rate and mode-mixity. Based on finite element analysis, a foundation modulus is proposed that closely agrees with the numerical compliance and energy release rate results for all cases considered. An analytical expression for crack root rotation of the loaded upper face sheet provides consistent results for both loading configurations. For the force-loaded single cantilever beam specimen (in contrast to the moment-loaded case), it was found that the crack length normalized energy release rate and the mode-mixity phase angle increase strongly as the crack length decreases, a result of increased dominance of shear loading.


Sign in / Sign up

Export Citation Format

Share Document