scholarly journals Influence of Rheological Behaviour on Load-Carrying Capacity of Timber-Concrete Composite Beams Under Long Term Loading

2012 ◽  
Vol 40 ◽  
pp. 20-25 ◽  
Author(s):  
J. Kanócz ◽  
V. Bajzecerová
2017 ◽  
Vol 21 (3) ◽  
pp. 865-894 ◽  
Author(s):  
AR Nazari ◽  
H Hosseini-Toudeshky ◽  
MZ Kabir

In this paper, the load-carrying capacity and failure mechanisms of sandwich beams and panels with elastomeric foam core and composite laminate face sheets are investigated. For this purpose, the flexural behavior of laminated composite beams and panels (applied as face sheets) is firstly investigated under three-point bending and central concentrated loads, respectively. Then, the same examination is conducted for the sandwich beams and panels, in which the proposed elastomeric foam is utilized as the core material. It is shown that the failure mechanisms which are associated to the core in the sandwich structures with crushable foams are not considered in the examined sandwich structures. The collapse of the sandwich specimens, examined here, is observed due to the failure of the skins in some steps. By multi-step collapse of these specimens via separately failure of the top and bottom skins, a considerable amount of energy is absorbed between these steps. Due to non-brittle behavior of the core material under loading, a large compression resistance is observed after failure of the top skin which led to the recovery of the load-carrying capacity in the sandwich beams. A similar behavior for the sandwich panels led to the increase of the ultimate strength after appearance of the failure lines on the top skin. The general outcomes of this investigation promise a good influence for the application of elastomeric foam as core material for sandwich structures.


2006 ◽  
Vol 302-303 ◽  
pp. 651-657
Author(s):  
Bing Han ◽  
Yuan Feng Wang

Based on the creep model of CFST members constructed with the Elastic Continuation and Plastic Flow theory of concrete creep and the creep theory of concrete under multi-axial stresses, the paper studies the load-carrying capacity of eccentrically compressed CFST members with consideration of creep. Some eccentrically compressed CFST members’ long-term loadbearing capacity is calculated and corresponding results are compared with the load-carrying capacity without consideration of creep. According to the analysis of calculating results, it can be concluded that creep will decrease the load carrying capacity of eccentrically compressed CFST members, and it should be paid enough attentions in actual engineering.


2019 ◽  
Vol 29 (3) ◽  
pp. 228-240 ◽  
Author(s):  
Sangeetha Palanivelu

Abstract Steel-concrete composite structures are widely used in the current construction of bridges and multi-storey buildings. The effect of shear connectors in a cold-formed steel-composite beam was studied under flexure. The number of channel connectors in the specimen was varied and the same was compared with a specimen without shear connectors. The performance and failure of cold-formed steel-composite beams were then studied. The presence of shear connectors in the tension zone prevents the formation of cracks which are the major cause of failure in a beam subjected to bending. The load-carrying capacity is greater in a composite beam and an increase in the number of channel connectors from one to five increases the load-carrying capacity by 60 % as compared to a specimen without a connector. A composite beam with five connectors is more ductile, with a ductility factor of 14. The Composite beams were also analysed using the finite element software ANSYS and were found to have good agreement with the experimental results.


2018 ◽  
Vol 16 (8) ◽  
pp. 317-332
Author(s):  
Hue Thi Nguyen ◽  
Hiroshi Masuya ◽  
Tuan Minh Ha ◽  
Saiji Fukada ◽  
Daishin Hanaoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document