Estimation of load-carrying capacity for thin-walled composite beams

2015 ◽  
Vol 119 ◽  
pp. 749-756 ◽  
Author(s):  
Tomasz Kubiak ◽  
Lukasz Kaczmarek
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3468
Author(s):  
Zbigniew Kolakowski ◽  
Andrzej Teter

The phenomena that occur during compression of hybrid thin-walled columns with open cross-sections in the elastic range are discussed. Nonlinear buckling problems were solved within Koiter’s approximation theory. A multimodal approach was assumed to investigate an effect of symmetrical and anti-symmetrical buckling modes on the ultimate load-carrying capacity. Detailed simulations were carried out for freely supported columns with a C-section and a top-hat type section of medium lengths. The columns under analysis were made of two layers of isotropic materials characterized by various mechanical properties. The results attained were verified with the finite element method (FEM). The boundary conditions applied in the FEM allowed us to confirm the eigensolutions obtained within Koiter’s theory with very high accuracy. Nonlinear solutions comply within these two approaches for low and medium overloads. To trace the correctness of the solutions, the Riks algorithm, which allows for investigating unsteady paths, was used in the FEM. The results for the ultimate load-carrying capacity obtained within the FEM are higher than those attained with Koiter’s approximation method, but the leap takes place on the identical equilibrium path as the one determined from Koiter’s theory.


2017 ◽  
Vol 21 (3) ◽  
pp. 865-894 ◽  
Author(s):  
AR Nazari ◽  
H Hosseini-Toudeshky ◽  
MZ Kabir

In this paper, the load-carrying capacity and failure mechanisms of sandwich beams and panels with elastomeric foam core and composite laminate face sheets are investigated. For this purpose, the flexural behavior of laminated composite beams and panels (applied as face sheets) is firstly investigated under three-point bending and central concentrated loads, respectively. Then, the same examination is conducted for the sandwich beams and panels, in which the proposed elastomeric foam is utilized as the core material. It is shown that the failure mechanisms which are associated to the core in the sandwich structures with crushable foams are not considered in the examined sandwich structures. The collapse of the sandwich specimens, examined here, is observed due to the failure of the skins in some steps. By multi-step collapse of these specimens via separately failure of the top and bottom skins, a considerable amount of energy is absorbed between these steps. Due to non-brittle behavior of the core material under loading, a large compression resistance is observed after failure of the top skin which led to the recovery of the load-carrying capacity in the sandwich beams. A similar behavior for the sandwich panels led to the increase of the ultimate strength after appearance of the failure lines on the top skin. The general outcomes of this investigation promise a good influence for the application of elastomeric foam as core material for sandwich structures.


2010 ◽  
Vol 102-104 ◽  
pp. 140-144
Author(s):  
Yi Ping Wang ◽  
Yong Zang ◽  
Di Ping Wu

The buckling behavior of thin-walled steel structures under load is still imperfectly understood, in spite of much research over the past 50 years. In this paper, the buckling behaviors of H-section columns under compression have been simulated with ANSYS. In the analysis, contact pairs between column ends and end blocks have been introduced into the model, and the load carrying capacity of the columns with four kinds of end constraint conditions and various typical initial geometric imperfections has been calculated and discussed. The results indicate that the load carrying capacity is most sensitive to the flexural imperfection, and the constraint condition cannot change the imperfection sensitivity of a column under compression, but improving restrain condition can heighten the load carrying capacity. They are helpful to the use and the tolerance control in the manufacture process of thin-walled H-section steel structures.


2014 ◽  
Vol 969 ◽  
pp. 39-44
Author(s):  
Jan Valeš

The presented paper deals with the load-carrying capacity analysis of compress steel members having the square closed (box) cross-section with non-dimensional slenderness 0.6, 0.8, 1.0 a 1.2. The axis of these beams is randomly three-dimensionally curved. Initial curvatures are modelled by random fields applying the LHS method. Load-carrying capacities are then calculated by the geometrically nonlinear solution using the ANSYS program. The results are presented both in form of histograms and of the table. The analysis of load-carrying capacity of beams with individual nonlinear slenderness is carried out, and the values are compared with the values of design load-carrying capacity according to the standard.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2956
Author(s):  
Hubert Debski ◽  
Sylwester Samborski ◽  
Patryk Rozylo ◽  
Pawel Wysmulski

This study investigates the effect of eccentric compressive load on the stability, critical states and load-carrying capacity of thin-walled composite Z-profiles. Short thin-walled columns made of carbon fiber-reinforced plastic composite material fabricated by the autoclave technique are examined. In experimental tests, the thin-walled structures were compressed until a loss of their load-carrying capacity was obtained. The test parameters were measured to describe the structure’s behavior, including the phenomenon of composite material failure. The post-critical load-displacement equilibrium paths and the acoustic emission signal enabling analysis of the composite material condition during the loading process were measured. The scope of the study also included performing numerical simulations by finite element method to solve the problem of non-linear stability and to describe the phenomenon of composite material damage based on the progressive failure model. The obtained numerical results showed a good agreement with the experimental characteristics of real structures. The numerical results are compared with the experimental findings to validate the developed numerical model.


Sign in / Sign up

Export Citation Format

Share Document