scholarly journals A Real-time Video Fire Flame and Smoke Detection Algorithm

2013 ◽  
Vol 62 ◽  
pp. 891-898 ◽  
Author(s):  
Chunyu Yu ◽  
Zhibin Mei ◽  
Xi Zhang
2021 ◽  
Author(s):  
Zhenyu Wang ◽  
Senrong Ji ◽  
Duokun Yin

Abstract Recently, using image sensing devices to analyze air quality has attracted much attention of researchers. To keep real-time factory smoke under universal social supervision, this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image analysis techniques. Since most smoke images in real scenes have challenging variances, it’s difficult for existing object detection methods. To this end, we introduce the two-stage smoke detection (TSSD) algorithm based on the lightweight framework, in which the prior knowledge and contextual information are modeled into the relation-guided module to reduce the smoke search space, which can therefore significantly improve the shortcomings of the single-stage method. Experimental results show that the TSSD algorithm can robustly improve the detection accuracy of the single-stage method and has good compatibility for different image resolution inputs. Compared with various state-of-the-art detection methods, the accuracy AP mean of the TSSD model reaches 59.24%, even surpassing the current detection model Faster R-CNN. In addition, the detection speed of our proposed model can reach 50 ms (20 FPS), which meets the real-time requirements, and can be deployed in the mobile terminal carrier. This model can be widely used in some scenes with smoke detection requirements, providing great potential for practical environmental applications.


2010 ◽  
Vol 450 ◽  
pp. 312-315 ◽  
Author(s):  
Chao Ching Ho ◽  
Ming Chen Chen ◽  
Chih Hao Lien

Designing a visual monitoring system to detect fire flame is a complex task because a large amount of video data must be transmitted and processed in real time. In this work, an intelligent fire fighting and detection system is proposed which uses a machine vision to locate the fire flame positions and to control a mobile robot to approach the fire source. This real-time fire monitoring system uses the motion history detection algorithm to register the possible fire position in transmitted video data and then analyze the spectral, spatial and temporal characteristics of the fire regions in the image sequences. The fire detecting and fighting system is based on the visual servoing feedback framework with portable components, off-the-shelf commercial hardware, and embedded programming. Experimental results show that the proposed intelligent fire fighting system is successfully detecting the fire flame and extinguish the fire source reliably.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
João Gaspar Ramôa ◽  
Vasco Lopes ◽  
Luís A. Alexandre ◽  
S. Mogo

AbstractIn this paper, we propose three methods for door state classification with the goal to improve robot navigation in indoor spaces. These methods were also developed to be used in other areas and applications since they are not limited to door detection as other related works are. Our methods work offline, in low-powered computers as the Jetson Nano, in real-time with the ability to differentiate between open, closed and semi-open doors. We use the 3D object classification, PointNet, real-time semantic segmentation algorithms such as, FastFCN, FC-HarDNet, SegNet and BiSeNet, the object detection algorithm, DetectNet and 2D object classification networks, AlexNet and GoogleNet. We built a 3D and RGB door dataset with images from several indoor environments using a 3D Realsense camera D435. This dataset is freely available online. All methods are analysed taking into account their accuracy and the speed of the algorithm in a low powered computer. We conclude that it is possible to have a door classification algorithm running in real-time on a low-power device.


Sign in / Sign up

Export Citation Format

Share Document