scholarly journals A new model for dynamic recrystallization under hot working conditions based on critical dislocation gradients

2017 ◽  
Vol 207 ◽  
pp. 2107-2112 ◽  
Author(s):  
Muhammad Imran ◽  
Markus Bambach
2007 ◽  
Vol 550 ◽  
pp. 369-374
Author(s):  
Matthew R. Barnett ◽  
Aiden G. Beer

An analytical approximation for the steady state dynamic recrystallized grain size is combined with a simple nucleation criterion to assess the propensity for dynamic recrystallization. In line with observation, the criterion predicts dynamic recrystallization in 99.9995% pure Al but not in material 99.5% pure. It also agrees with the observation that zone refined ferrite can display dynamic recrystallization at high temperatures and low strain rates but not at lower hot working temperatures. The criterion is applied here to common wrought magnesium alloys to argue that conventional dynamic recrystallization is expected under "normal" hot working conditions.


2021 ◽  
Vol 158 ◽  
pp. 106928
Author(s):  
Ivan Serebriakov ◽  
Eli Saul Puchi-Cabrera ◽  
Laurent Dubar ◽  
Philippe Moreau ◽  
Damien Meresse ◽  
...  

Ergonomics ◽  
1971 ◽  
Vol 14 (1) ◽  
pp. 85-90 ◽  
Author(s):  
R. B. WELCH ◽  
E. O. LONGLEY ◽  
O. LOMAEV

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1042 ◽  
Author(s):  
Dao-chun Hu ◽  
Lei Wang ◽  
Hong-jun Wang

Multiple hot-compression tests were carried out on the 6082 aluminum (Al) alloy using a Gleeble-1500 thermal simulation testing machine. Data on flow stresses of the 6082 Al alloy at deformation temperatures of 623 to 773 K and strain rates from 0.01 to 5 s−1 were attained. Utilizing electron backscatter diffraction (EBSD) and a transmission electron microscope (TEM), the dynamic recrystallization behaviors of the 6082 Al alloy during hot compression in isothermal conditions were explored. With the test data, a hot-working processing map for the 6082 Al alloy (based on dynamic material modeling (DMM)) was drawn. Using the work-hardening rate, the initial critical strain causing dynamic recrystallization was determined, and an equation for the critical strain was constructed. A dynamic model for the dynamic recrystallization of the 6082 Al alloy was established using analyses and test results from the EBSD. The results showed that the safe processing zone (with a high efficiency of power dissipation) mainly corresponded to a zone with deformation temperatures of 703 to 763 K and strain rates of 0.1 to 0.3 s−1. The alloy was mainly subjected to continuous dynamic recrystallization in the formation of the zone. According to the hot-working processing map and an analysis of the microstructures, it is advised that the following technological parameters be selected for the 6082 Al alloy during hot-forming: a range of temperatures between 713 and 753 K and strain rates between 0.1 and 0.2 s−1.


Sign in / Sign up

Export Citation Format

Share Document