scholarly journals Data-Driven Machine Learning System for Optimization of Processes Supporting the Distribution of Goods and Services – a case study

2020 ◽  
Vol 44 ◽  
pp. 60-67
Author(s):  
Zbigniew Tarapata ◽  
Tadeusz Nowicki ◽  
Ryszard Antkiewicz ◽  
Jaroslaw Dudzinski ◽  
Konrad Janik
2013 ◽  
Vol 6s1 ◽  
pp. BII.S11770 ◽  
Author(s):  
Pierre Zweigenbaum ◽  
Thomas Lavergne ◽  
Natalia Grabar ◽  
Thierry Hamon ◽  
Sophie Rosset ◽  
...  

Medical entity recognition is currently generally performed by data-driven methods based on supervised machine learning. Expert-based systems, where linguistic and domain expertise are directly provided to the system are often combined with data-driven systems. We present here a case study where an existing expert-based medical entity recognition system, Ogmios, is combined with a data-driven system, Caramba, based on a linear-chain Conditional Random Field (CRF) classifier. Our case study specifically highlights the risk of overfitting incurred by an expert-based system. We observe that it prevents the combination of the 2 systems from obtaining improvements in precision, recall, or F-measure, and analyze the underlying mechanisms through a post-hoc feature-level analysis. Wrapping the expert-based system alone as attributes input to a CRF classifier does boost its F-measure from 0.603 to 0.710, bringing it on par with the data-driven system. The generalization of this method remains to be further investigated.


2021 ◽  
Author(s):  
Daria Kurz ◽  
Carlos Salort S&aacutenchez ◽  
Cristian Axenie

For decades, researchers have used the concepts of rate of change and differential equations to model and forecast neoplastic processes. This expressive mathematical apparatus brought significant insights in oncology by describing the unregulated proliferation and host interactions of cancer cells, as well as their response to treatments. Now, these theories have been given a new life and found new applications. With the advent of routine cancer genome sequencing and the resulting abundance of data, oncology now builds an "arsenal" of new modeling and analysis tools. Models describing the governing physical laws of tumor-host-drug interactions can be now challenged with biological data to make predictions about cancer progression. Our study joins the efforts of the mathematical and computational oncology community by introducing a novel machine learning system for data-driven discovery of mathematical and physical relations in oncology. The system utilizes computational mechanisms such as competition, cooperation, and adaptation in neural networks to simultaneously learn the statistics and the governing relations between multiple clinical data covariates. Targeting an easy adoption in clinical oncology, the solutions of our system reveal human-understandable properties and features hidden in the data. As our experiments demonstrate, our system can describe nonlinear conservation laws in cancer kinetics and growth curves, symmetries in tumor's phenotypic staging transitions, the pre-operative spatial tumor distribution, and up to the nonlinear intracellular and extracellular pharmacokinetics of neoadjuvant therapies. The primary goal of our work is to enhance or improve the mechanistic understanding of cancer dynamics by exploiting heterogeneous clinical data. We demonstrate through multiple instantiations that our system is extracting an accurate human-understandable representation of the underlying dynamics of physical interactions central to typical oncology problems. Our results and evaluation demonstrate that using simple - yet powerful - computational mechanisms, such a machine learning system can support clinical decision making. To this end, our system is a representative tool of the field of mathematical and computational oncology and offers a bridge between the data, the modeler, the data scientist, and the practising clinician.


2021 ◽  
Vol 4 ◽  
Author(s):  
Daria Kurz ◽  
Carlos Salort Sánchez ◽  
Cristian Axenie

For decades, researchers have used the concepts of rate of change and differential equations to model and forecast neoplastic processes. This expressive mathematical apparatus brought significant insights in oncology by describing the unregulated proliferation and host interactions of cancer cells, as well as their response to treatments. Now, these theories have been given a new life and found new applications. With the advent of routine cancer genome sequencing and the resulting abundance of data, oncology now builds an “arsenal” of new modeling and analysis tools. Models describing the governing physical laws of tumor–host–drug interactions can be now challenged with biological data to make predictions about cancer progression. Our study joins the efforts of the mathematical and computational oncology community by introducing a novel machine learning system for data-driven discovery of mathematical and physical relations in oncology. The system utilizes computational mechanisms such as competition, cooperation, and adaptation in neural networks to simultaneously learn the statistics and the governing relations between multiple clinical data covariates. Targeting an easy adoption in clinical oncology, the solutions of our system reveal human-understandable properties and features hidden in the data. As our experiments demonstrate, our system can describe nonlinear conservation laws in cancer kinetics and growth curves, symmetries in tumor’s phenotypic staging transitions, the preoperative spatial tumor distribution, and up to the nonlinear intracellular and extracellular pharmacokinetics of neoadjuvant therapies. The primary goal of our work is to enhance or improve the mechanistic understanding of cancer dynamics by exploiting heterogeneous clinical data. We demonstrate through multiple instantiations that our system is extracting an accurate human-understandable representation of the underlying dynamics of physical interactions central to typical oncology problems. Our results and evaluation demonstrate that, using simple—yet powerful—computational mechanisms, such a machine learning system can support clinical decision-making. To this end, our system is a representative tool of the field of mathematical and computational oncology and offers a bridge between the data, the modeler, the data scientist, and the practicing clinician.


Author(s):  
Tong Lin ◽  
Leiming Hu ◽  
Shawn Litster ◽  
Levent Burak Kara

Abstract This paper presents a set of data-driven methods for predicting nitrogen concentration in proton exchange membrane fuel cells (PEMFCs). The nitrogen that accumulates in the anode channel is a critical factor giving rise to significant inefficiency in fuel cells. While periodically purging the gases in the anode channel is a common strategy to combat nitrogen accumulation, such open-loop strategies also create sub-optimal purging decisions. Instead, an accurate prediction of nitrogen concentration can help devise optimal purging strategies. However, model based approaches such as CFD simulations for nitrogen prediction are often unavailable for long-stack fuel cells due to the complexity of the chemical environment, or are inherently slow preventing them from being used for real-time nitrogen prediction on deployed fuel cells. As one step toward addressing this challenge, we explore a set of data-driven techniques for learning a regression model from the input parameters to the nitrogen build-up using a model-based fuel cell simulator as an offline data generator. This allows the trained machine learning system to make fast decisions about nitrogen concentration during deployment based on other parameters that can be obtained through sensors. We describe the various methods we explore, compare the outcomes, and provide future directions in utilizing machine learning for fuel cell physics modeling in general.


Author(s):  
Francesco Gagliardi

A syndrome is a set of typical clinical features that appear together often enough to suggest they may represent a single, as yet unknown, disease. The discovery of syndromes and relative taxonomy formation is the critical early phase of the process of scientific discovery in the medical domain. The author proposes a machine learning system to discover syndromes (seen as prototypes of clinical cases) that is based on the Eleanor Rosch’s prototype theory on how the human mind categorizes and infers prototypes from observations. A comparison on a case study in erythemato-squamous diseases of the proposed system against three hierarchical clustering algorithms shows that the system obtains performances which are averagely better. The system implemented can be considered a “scientific discovery support system” because it can discover unknown syndromes to the advantage of research activities and syndromic surveillance.


Sign in / Sign up

Export Citation Format

Share Document