scholarly journals Numerical Investigation of Upsetting and Transverse Extrusion Process for “Rod with Flange” Parts and Preforms Production Made from Aluminium Alloy 1013

2020 ◽  
Vol 47 ◽  
pp. 1504-1511 ◽  
Author(s):  
Mikhail Petrov ◽  
Yuliy Kalpin ◽  
Pavel Petrov
2013 ◽  
Vol 219 ◽  
pp. 15-30 ◽  
Author(s):  
A. Gariépy ◽  
F. Bridier ◽  
M. Hoseini ◽  
P. Bocher ◽  
C. Perron ◽  
...  

2020 ◽  
Vol 110 (10) ◽  
pp. 684-688
Author(s):  
Alexander Weiß ◽  
Mathias Liewald

Die Fertigung von Hohlwellen mit komplexer Innengeometrie bedingte bisher meist aufwendige Prozessrouten. Ein am Institut für Umformtechnik der Universität Stuttgart entwickeltes Kaltfließpressverfahren soll nun die wirtschaftliche und flexible Fertigung von Hohlwellen mit Wanddickenvariation ermöglichen. In diesem Beitrag werden das Verfahren beschrieben und die Ergebnisse der numerischen Untersuchung des Einflusses der Werkzeugkinematik auf die erzielbare Pressteilgeometrie dargelegt.   Usually, the production of hollow shafts with complex internal geometry by cold forging requires extensive process routes. A novel cold forging process developed at the Institute for Metal Forming Technology at the University of Stuttgart allows for an economical and flexible production of hollow shafts. This article describes the manufacturing process and presents the results of a numerical investigation for determining the influence of tool kinematics on the achievable part geometry.


2016 ◽  
Vol 61 (1) ◽  
pp. 433-438 ◽  
Author(s):  
W. Szymański

Studies were conducted to improve the mechanical properties of composites based on 7475 aluminium alloy reinforced with Al3Ti particles fabricated by the “in situ” process. The first step involved “dissolving” of titanium in the liquid aluminium alloy and fabricating in this way composite materials with different content of the reinforcing phase (15-45wt%). A relationship between the composite hardness and content of the reinforcing phase was confirmed. The second step involved the improvement of cohesion between the reinforcing particles and composite matrix. By extrusion of samples in semi-solid state, an average increase in hardness by 15-20% relative to the unextruded composite was obtained. In the third step, the fabricated composite was subjected to a heat treatment corresponding to the state T6 in 7475 alloy, which raised the hardness by about 30%. Structure examinations carried out by means of optical microscopy and scanning electron microscopies as well as the results of hardness measurements were described. They enabled estimating the effect of the content of produced Al3Ti particles, and of the extrusion process in semi-solid state and heat treatment parameters on the composite properties. In compression test, the yield strength and compressive strength of the heat-treated composites were determined.


Sign in / Sign up

Export Citation Format

Share Document