composite hardness
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1807
Author(s):  
Ivana O. Mladenović ◽  
Jelena S. Lamovec ◽  
Dana G. Vasiljević-Radović ◽  
Rastko Vasilić ◽  
Vesna J. Radojević ◽  
...  

The influence of various electrolysis parameters, such as the type of cathode, composition of the electrolyte and electrolysis time, on the morphology, structure and hardness of copper coatings has been investigated. Morphology and structure of the coatings were analyzed by scanning electron microscope (SEM), atomic force microscope (AFM) and X-ray diffraction (XRD), while coating hardness was examined by Vickers microindentation test applying the Chicot–Lesage (C–L) composite hardness model. Depending on the conditions of electrolysis, two types of Cu coatings were obtained: fine-grained mat coatings with a strong (220) preferred orientation from the sulfate electrolyte and smooth mirror bright coatings with a strong (200) preferred orientation from the electrolyte with added leveling/brightening additives. The mat coatings showed larger both measured composite and calculated coating hardness than the mirror bright coatings, that can be explained by the phenomena on boundary among grains. Independent of electrolysis conditions, the critical relative indentation depth (RID) of 0.14 was established for all types of the Cu coatings, separating the zone in which the composite hardness can be equaled with the coating hardness and the zone requiring an application of the C–L model for a determination of the absolute hardness of the Cu coatings.


2021 ◽  
Vol 15 (57) ◽  
pp. 14-23
Author(s):  
V. Bharath ◽  
V. Auradi ◽  
Madeva Nagaral

In the current investigation, efforts are being made to produce an Al2014-Al2O3p composite with variable particle size of 88 mm by liquid stir casting route. 9, 12 and 15 weight proportions of Al2O3p were added to the Al2014 base alloy. By using SEM and EDS testing, microstructural studies have been conducted. Al2014-9, 12 and 15 weight proportion of Al2O3p composites mechanical behavior is determined in line with ASTM standards. Electron microscopic images showed that alumina (Al2O3p) particles are dispersed uniformly within the Al2014 composite matrix. EDS study confirmed the proximity of Al and O elements to composites reinforced by Al2O3p. It is also found that Al2014-Al2O3p composite hardness, UTS, and yield strength are improved by the addition of 9, 12 and 15 weight proportion of Al2O3p. Due to the addition of alumina particles in the Al2014 matrix alloy, the ductility of the produced composites decreases. Tensile fractography is performed using SEM to consider the mechanisms for failure.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Ivana O. Mladenović ◽  
Nebojša D. Nikolić ◽  
Jelena S. Lamovec ◽  
Dana Vasiljević-Radović ◽  
Vesna Radojević

The mechanical characteristics of electrochemically deposited copper coatings have been examined by application of two hardness composite models: the Chicot-Lesage (C-L) and the Cheng-Gao (C-G) models. The 10, 20, 40 and 60 µm thick fine-grained Cu coatings were electrodeposited on the brass by the regime of pulsating current (PC) at an average current density of 50 mA cm−2, and were characterized by scanning electron (SEM), atomic force (AFM) and optical (OM) microscopes. By application of the C-L model we determined a limiting relative indentation depth (RID) value that separates the area of the coating hardness from that with a strong effect of the substrate on the measured composite hardness. The coating hardness values in the 0.9418–1.1399 GPa range, obtained by the C-G model, confirmed the assumption that the Cu coatings on the brass belongs to the “soft film on hard substrate” composite hardness system. The obtained stress exponents in the 4.35–7.69 range at an applied load of 0.49 N indicated that the dominant creep mechanism is the dislocation creep and the dislocation climb. The obtained mechanical characteristics were compared with those recently obtained on the Si(111) substrate, and the effects of substrate characteristics such as hardness and roughness on the mechanical characteristics of the electrodeposited Cu coatings were discussed and explained.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Víctor Tuninetti ◽  
Andrés Felipe Jaramillo ◽  
Guiomar Riu ◽  
Carlos Rojas-Ulloa ◽  
Amna Znaidi ◽  
...  

This article focuses on a systematic study of a Ti-6Al-4V alloy in order to extensively characterize the main mechanical properties at the macro-, micro- and submicrometric length scale under different stress fields. Hardness, elastic modulus, true stress–strain curves and strain-hardening exponent are correlated with the intrinsic properties of the α- and β-phases that constitute this alloy. A systematic characterization process followed, considering the anisotropic effect on both orthogonal crystallographic directions, as well as determining the intrinsic properties for the α-phase. An analytical relationship was established between the flow stress determined under different stress fields, testing geometries and length scales, highlighting that it is possible to estimate flow stress under compression and/or tensile loading from the composite hardness value obtained by instrumented nanoindentation testing.


2021 ◽  
pp. 105-105
Author(s):  
Ivana Mladenovic ◽  
Jelena Lamovec ◽  
Dana Vasiljevic-Radovic ◽  
Vesna Radojevic ◽  
Nebojsa Nikolic

In this study, a novel procedure based on application of the Chicot?Lesage (C?L) composite hardness model was proposed for determination of an absolute hardness of electrolytically produced copper coatings. The Cu coatings were electrodeposited on the Si(111) substrate by the pulsating current (PC) regime with a variation of the following parameters: the pause duration, the current density amplitude and the coating thickness. The topography of produced coatings was characterized by atomic force microscope (AFM), while a hardness of the coatings was examined by Vickers microindentation test. Applying the C?L model, the critical relative indentation depth (RID)c of 0.14 was determined, which is independent of all examined parameters of the PC regime. This RID value separated the area in which the composite hardness of the Cu coating corresponded to its absolute hardness (RID < 0.14) from the area in which application of the C?L model was necessary for a determination of the absolute coating hardness (RID ? 0.14). The obtained value was in a good agreement with the value already published in the literature.


2020 ◽  
Vol 72 (4) ◽  
pp. 97-104
Author(s):  
S. Zhuzbayev ◽  
◽  
A. Adilova ◽  
Sh. Akhmetzhanova ◽  
◽  
...  

This article discusses the discovery and creation of composite materials, general characteristics and differences, structure, purpose of structural materials, a special combination of strength, stiffness and lightness, composite materials regardless of their origin, the result of volumetric combinations of various components, without individual components. properties, continuous component in the volume of composite materials - matrix, types of materials and their classification, composite building materials. Also reinforced building materials, the properties of many materials around us, their features, the properties of composite materials, their use in all fields of science, technology, industry, the ability to adjust the properties of composite materials using several matrices or fillers of different nature, the strength of the composite, hardness and deformation, composite materials with special properties.


Author(s):  
Avery Carroll ◽  
Rachel Carey ◽  
Michael Hurst ◽  
Michael Liu ◽  
Mathew Kuttolamadom

Abstract The objective of this research is to evaluate the feasibility of using a high energy laser-based additive manufacturing process to fabricate tungsten-carbide-cobalt (WC-Co) bulk structures that have properties comparable to those achieved by traditional fabrication methods. In particular, this work will investigate the properties and performance of these hard carbides densified by sintering alone, as compared to methods (such as hot isostatic pressing (HIP) and spark plasma sintering (SPS)) which impart simultaneous compaction and sintering. For this, a design of experiments was utilized to investigate the pertinent process parameter design space for the selective laser melting (SLM) process with a view to manufacture structurally-integral samples. Besides organizing qualitative observations, the effects of these process conditions were correlated with the resulting physical properties (viz., density, micro-scale composite hardness, and nano-scale hardness and Young’s modulus), as well as with microstructure and chemical compositions. Results showed certain samples with competitively-high densities, hardness and moduli, but with a large spread in properties, as is typical for such manufacturing processes; also, microstructural characteristics in line with desirable traits achievable via traditional methods was observed. Altogether, this work shows the promise of using SLM to fabricate bulk carbide structures.


2020 ◽  
Author(s):  
Mohammad Torki ◽  
behrooz movahedi ◽  
S S. ghazanfari ◽  
M. Milani

Abstract The aim of this study was to fabricate YAG/Al2O3 ceramic composites with different alumina nanoparticles using slip casting and the atmospheric sintering process. In addition, some mechanical properties such as hardness and elastic modules of this novel ceramics were evaluated using the nanoindention technique. The results showed that the rheological behavior of the slurry was optimized to the solid loading of 55 wt% and the relative density of the green body was enhanced up to 65%. Relative density was increased after sintering at 1700 °C for 12 h to 99.5% and the pore size (150 nm) was reduced to half of that of powder particles. It should be noted that the optimum amount of alumina nanoparticles as a reinforcing agent in the matrix was less than 5%wt and the composite hardness was increased to 7.3%, as compared to the pure YAG ceramic.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 488 ◽  
Author(s):  
Ivana O. Mladenović ◽  
Jelena S. Lamovec ◽  
Dana G. Vasiljević Radović ◽  
Rastko Vasilić ◽  
Vesna J. Radojević ◽  
...  

Copper electrodeposition on (111)-oriented Si substrate was performed by the pulsating current (PC) regime at various average current densities in the range of 15–70 mA·cm−2, obtained by varying either the frequency (30, 50, 80 and 100 Hz for the current density amplitude of 100 mA·cm−2) or the current density amplitude (120 and 140 mA·cm−2 at 100 Hz). The produced Cu coatings were examined by SEM, AFM and XRD techniques. The morphology of the coatings changed from those with large grains to fine-grained and globular, while the crystal structure changed from the strong (220) to the strong (111) preferred orientation by increasing the average current density. The mechanical characteristics of coatings were examined using Vickers micro-indentation tests, applying the Chicot–Lesage (C–L) composite hardness model for the analysis of microhardness. The maximum microhardness was obtained for the Cu coating produced at an average current density of 50 mA·cm−2, with a current density amplitude of 100 mA·cm−2 and a frequency of 100 Hz. This copper coating was fine-grained and showed the smallest roughness in relation to the other coatings, and it was obtained in the mixed activation–diffusion control between the end of the effect of the activation control and the beginning of the dominant effect of diffusion control.


Sign in / Sign up

Export Citation Format

Share Document