Thermodynamic and economic evaluation of biomethane and carbon dioxide liquefaction process in a hybridized system of biogas upgrading process and mixed fluid cascade liquefaction cycle

Author(s):  
Bahram Ghorbani ◽  
Armin Ebrahimi ◽  
Masoud Ziabasharhagh
2021 ◽  
Vol 243 ◽  
pp. 114363
Author(s):  
Ahmad Naquash ◽  
Muhammad Abdul Qyyum ◽  
Junaid Haider ◽  
Hankwon Lim ◽  
Moonyong Lee

Author(s):  
Francisco M. Baena‐Moreno ◽  
Mónica Rodríguez‐Galán ◽  
Fernando Vega ◽  
Isabel Malico ◽  
Benito Navarrete

2017 ◽  
Vol 164 ◽  
pp. 1205-1218 ◽  
Author(s):  
Francesco Ferella ◽  
Alessandro Puca ◽  
Giuliana Taglieri ◽  
Leucio Rossi ◽  
Katia Gallucci

2012 ◽  
Vol 10 (3) ◽  
pp. 97-118
Author(s):  
Krzysztof Biernat ◽  
Izabela Różnicka

Both governmental and international programs support the promotion of biofuels and aim to increase the limit of renewable energy used in the fuel energy balance. Biogas is produced during the anaerobic methane fermentationprocess and it is known as a significant source of renewable energy, contributing to agriculture and environmental protection. Three types of biogas can be distinguished: biogas from sewage sludge, biogas collected from land`fils, andagricultural biogas. There are several possibilities of using upgraded biogas. Biogas can be used in cogeneration systems to provide heat and electricity, in transportation as a motor fuel and in the production of biohydrogen. Biogas upgrading process leads to a product which is characterized by the same parameters as compressed natural gas. Direct biogas use in the production of hydrogen is possible because of prior purification from traces like hydrogen sulfide, except carbon dioxide, by which the reaction can proceed in the desired manner.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3379
Author(s):  
Edyta Słupek ◽  
Patrycja Makoś ◽  
Jacek Gębicki

This paper presents the theoretical screening of 23 low-cost deep eutectic solvents (DESs) as absorbents for effective removal of the main impurities from biogas streams using a conductor-like screening model for real solvents (COSMO-RS). Based on thermodynamic parameters, i.e., the activity coefficient, excess enthalpy, and Henry’s constant, two DESs composed of choline chloride: urea in a 1:2 molar ratio (ChCl:U 1:2), and choline chloride: oxalic acid in a 1:2 molar ratio (ChCl:OA 1:2) were selected as the most effective absorbents. The σ-profile and σ-potential were used in order to explain the mechanism of the absorptive removal of CO2, H2S, and siloxanes from a biogas stream. In addition, an economic analysis was prepared to demonstrate the competitiveness of new DESs in the sorbents market. The unit cost of 1 m3 of pure bio-methane was estimated to be in the range of 0.35–0.37 EUR, which is comparable to currently used technologies.


Sign in / Sign up

Export Citation Format

Share Document