scholarly journals Training volume is associated with pain sensitivity, but not with endogenous pain modulation, in competitive swimmers

2019 ◽  
Vol 37 ◽  
pp. 150-156 ◽  
Author(s):  
Kevin Kuppens ◽  
Stef Feijen ◽  
Nathalie Roussel ◽  
Jo Nijs ◽  
Patrick Cras ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Isabel Ellerbrock ◽  
Angelica Sandström ◽  
Jeanette Tour ◽  
Silvia Fanton ◽  
Diana Kadetoff ◽  
...  

AbstractThe neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5‐HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5‐HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5‐HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5‐HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5‐HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.


2011 ◽  
Vol 12 (8) ◽  
pp. 875-883 ◽  
Author(s):  
Roi Treister ◽  
Dorit Pud ◽  
Richard P. Ebstein ◽  
Efrat Laiba ◽  
Yael Raz ◽  
...  

Cephalalgia ◽  
2017 ◽  
Vol 38 (7) ◽  
pp. 1307-1315 ◽  
Author(s):  
Dan Levy ◽  
Lorin Abdian ◽  
Michal Dekel-Steinkeller ◽  
Ruth Defrin

Background and objectives The prevalence of pain syndromes that affect the territories innervated by the trigeminal nerve, such as headaches, is one of the highest and ranks second only to low back pain. A potential mechanism underlying this high prevalence may be a relatively weak endogenous pain modulation of trigeminal pain. Here, we sought to systematically compare endogenous pain modulation capabilities in the trigeminal region to those of extra-trigeminal regions in healthy subjects. Methods Healthy, pain free subjects (n = 17) underwent a battery of quantitative sensory testing to assess endogenous pain inhibition and pain enhancement efficiencies within and outside the trigeminal innervated region. Measurements included conditioned pain modulation (CPM), temporal summation of pain (TSP) and spatial summation of pain (SSP). Results Testing configurations that included trigeminal-innervated body regions displayed significantly weaker CPM when compared to extra-trigeminal innervated areas. SSP magnitude was smaller in the ophthalmic trigeminal innervation when compared to other body regions. TSP magnitude was not different between the different body regions tested. Conclusions Our findings point to regional differences in endogenous pain inhibition and suggest that in otherwise healthy individuals, the trigeminal innervation is subjected to a weaker inhibitory pain control than other body regions. Such weaker endogenous pain control could play, at least in part, a role in mediating the high prevalence of trigeminal-related pain syndromes, including primary headaches and TMD pain.


Author(s):  
Sofiene Amara ◽  
Emmet Crowley ◽  
Senda Sammoud ◽  
Yassine Negra ◽  
Raouf Hammami ◽  
...  

This study aimed to compare the effectiveness of high, moderate, and low resistance training volume-load of maximum strength training on muscle strength and swimming performance in competitive swimmers. Thirty-three male swimmers were randomly allocated to high (age = 16.5 ± 0.30 years), moderate (age = 16.1 ± 0.32 years) and a low resistance training volume-load group (age = 15.9 ± 0.31). This study was carried out in mid-season (January to March). Pre and post strength (e.g., repetition maximum [1RM] leg extension and bench press tests), swimming (25, 50 m front-crawl), start (speed, time, distance) and turn (time of turn) performance tests were conducted. Our findings revealed a large main effect of time for 1RM bench press: d = 1.38; 1RM leg extension: d = 1.55, and for 25 (d = 1.12), and 50 m (d = 1.97) front-crawl, similarly for start and turn performance (d = 1.28–1.46). However, no significant Group × Time interactions were shown in all strength swimming performances, start and turn tests (p > 0.05). In conclusion, low training loads have been shown to elicit the same results as moderate, and high training loads protocol. Therefore, this study shows evidence that the addition of low training volume-loads as a regular part of a maximal strength training regime will elicit improvements in strength and swimming performance.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Steffan Wittrup McPhee Christensen ◽  
Pablo Bellosta-López ◽  
Víctor Doménech-García ◽  
Pablo Herrero ◽  
Thorvaldur Skuli Palsson

Sign in / Sign up

Export Citation Format

Share Document