Effect of hydrological regime on the macroinvertebrate community in Three-Gorges Reservoir, China

2010 ◽  
Vol 226 (1-2) ◽  
pp. 129-135 ◽  
Author(s):  
Min Zhang ◽  
Meiling Shao ◽  
Yaoyang Xu ◽  
Qinghua Cai
2008 ◽  
Vol 93 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Mei-Ling Shao ◽  
Zhi-Cai Xie ◽  
Xin-Qin Han ◽  
Ming Cao ◽  
Qing-Hua Cai

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3427
Author(s):  
Qingqing Tang ◽  
Daming Tan ◽  
Yongyue Ji ◽  
Lingyun Yan ◽  
Sidong Zeng ◽  
...  

The dynamics of the mid-channel bars (MCBs) in the Three Gorges Reservoir (TGR) were substantially impacted by the large water-level changes due to the impoundments of the TGR. However, it is still not clear how the morphology of the MCBs changed under the influence of water level and hydrological regime changes induced by the impoundments and operation of the TGR. In this work, the MCBs in the TGR were retrieved using Landsat remote sensing images from 1989 to 2019, and the spatio-temporal variations in the number, area, morphology and location of the MCBs during different impoundment periods were investigated. The results showed that the number and area of MCBs changed dramatically with water-level changes, and the changes were dominated by MCBs with an area less than 0.03 km2 and larger than 1 km2. The area of MCBs decreased progressively with the rising water level, and the number generally showed a decreasing trend, with the minimum number occurring at the third stage when the water level reached 139 m, resulting in the maximum average area at this period. The ratio of length to width of the MCBs generally decreased with the changes in hydrological and sediment regimes, leading to a shape adjustment from narrow–long to relatively short–round with the rising of the water level. The water impoundments of the TGR led to the migration of the dominant area from the upper section to the middle section of the TGR and resulted in a more even distribution of MCBs in the TGR. The results improve our understanding of the mechanisms of the development of MCBs in the TGR under the influence of water impoundment coupled with the annually cyclic hydrological regime and longer periods of inundation and exposure.


2009 ◽  
Vol 17 (5) ◽  
pp. 512
Author(s):  
Wu Hui-xian ◽  
Yao Jian-liang ◽  
Liu Yan ◽  
Xue Jun-zeng ◽  
Cai Qing-hua ◽  
...  

2010 ◽  
Vol 30 (3) ◽  
pp. 303-314 ◽  
Author(s):  
Zhi-Jun LU ◽  
Lian-Fa LI ◽  
Han-Dong HUANG ◽  
Min TAO ◽  
Quan-Fa ZHANG ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 8490
Author(s):  
Hongjie Peng ◽  
Lei Hua ◽  
Xuesong Zhang ◽  
Xuying Yuan ◽  
Jianhao Li

In recent years, ecosystem service values (ESV) have attracted much attention. However, studies that use ecological sensitivity methods as a basis for predicting future urban expansion and thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological sensitive zone has been identified in Three Gorges reservoir area; it accounts for about 35.86% of the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million. Jiulongpo, Banan and Shapingba had the highest ESV losses.


Sign in / Sign up

Export Citation Format

Share Document