Palaeovegetation and climate oscillation of western Odisha, India: A pollen data-based synthesis for the Mid-Late Holocene

2014 ◽  
Vol 325 ◽  
pp. 83-92 ◽  
Author(s):  
Swati Tripathi ◽  
Sadhan K. Basumatary ◽  
Veeru K. Singh ◽  
Samir K. Bera ◽  
Chandra M. Nautiyal ◽  
...  
2011 ◽  
Vol 7 (4) ◽  
pp. 1351-1362 ◽  
Author(s):  
A.-M. Lézine ◽  
W. Zheng ◽  
P. Braconnot ◽  
G. Krinner

Abstract. The discovery of groundwater-fed Lake Yoa (19.03° N, 20.31° E) in the hyperarid desert of northern Chad by the German research team ACACIA headed by S. Kröpelin provides a unique, continuous sedimentary sequence of late Holocene age available in the entire Saharan desert. Here we present pollen data and climate simulations using the LMDZ atmospheric model with a module representing the climatologically-relevant thermal and hydrological processes occurring above and beneath inland water surfaces to document past environmental and climate changes during the last 6000 cal yr BP. Special attention is paid to wind strength and direction, length and amplitude of the rainy season, and dry spell occurrence, all of which are of primary importance for plant distribution and pollen transport. In addition to climate changes and their impact on the natural environment, anthropogenic changes are also discussed. Two main features can be highlighted: (1) the shift from an earlier predominantly monsoonal climate regime to one dominated by northern Mediterranean fluxes that occurred after 4000 cal yr BP. The direct consequence of this was the establishment of the modern desert environment at Yoa at 2700 cal yr BP. (2) Changes in climate parameters (simulated rainfall amount and dry spell length) between 6 and 4000 cal yr BP were comparatively minor. However, changes in the seasonal distribution of precipitation during this time interval dramatically affected the vegetation composition and were at the origin of the retreat of tropical plant communities from Lake Yoa.


The Holocene ◽  
2016 ◽  
Vol 27 (5) ◽  
pp. 683-693 ◽  
Author(s):  
Zhaodong Feng ◽  
Aizhi Sun ◽  
Nurbayev Abdusalih ◽  
Min Ran ◽  
Alishir Kurban ◽  
...  

The location of the Altai Mountains at the limits of both the Pacific and Atlantic influences implies that this mountain range is an important climatic boundary. Based on pollen data of 188 samples of a 390-cm core from Narenxia Peat in the southern Altai with a chronologic support of 11 accelerator mass spectrometry (AMS) dates, we reconstructed the Holocene climatic change at Narenxia Peat. The reconstruction revealed five stages of climatic change: a cold and dry latest deglacial (prior to ~11,500 cal. yr BP), a warm and wet early-Holocene (~11,500 to ~7000 cal. yr BP), a considerably cooled and dried middle Holocene (~7000 to ~4000 cal. yr BP), a resumed warm and wet late-Holocene (~4000 to ~1200 cal. yr BP), and a relatively cool and dry latest Holocene (past ~1200 years). The reconstructions of mean annual temperature (MAT) and mean annual precipitation (MAP) from Narenxia Peat well resemble the reconstructions of North Atlantic Oscillations (NAO) and El Niño–Southern Oscillations (ENSO). The resemblance implies that the Holocene millennial-scale changes in MAT and MAP in the Altai might have been causally associated with the variations in NAO and ENSO.


2013 ◽  
Vol 284 ◽  
pp. 123-131 ◽  
Author(s):  
Gennady Matishov ◽  
Galina Kovaleva ◽  
Elena Novenko ◽  
Kristina Krasnorutskaya ◽  
Vladimir Pol'shin

2020 ◽  
Vol 8 ◽  
Author(s):  
Andrea Jaeschke ◽  
Matthias Thienemann ◽  
Enno Schefuß ◽  
Jonas Urban ◽  
Frank Schäbitz ◽  
...  

Northern Africa’s past climate is characterized by a prolonged humid period known as the African Humid Period (AHP), giving origin to the “Green Sahara” and supporting human settlements into areas that are now desert. The spatial and temporal extent of climate change associated with the AHP is, however, subject to ongoing debate. Uncertainties arise from the complex nature of African climate, which is controlled by the strength and interactions of different monsoonal systems, resulting in meridional shifts in rainfall belts and zonal movements of the Congo Air Boundary. Here, we examine a ∼12,500-years record of hydroclimate variability from Lake Dendi located in the Ethiopian highlands based on a combination of plant-wax-specific hydrogen (δD) and carbon (δ13C) isotopes. In addition, pollen data from the same sediment core are used to investigate the response of the regional vegetation to changing climate. Our δD record indicates high precipitation during peak AHP (ca. 10 to 8 ka BP) followed by a gradual transition toward a drier late Holocene climate. Likewise, vegetation cover changed from predominant grassland toward an arid montane forest dominated by Juniperus and Podocarpus accompanied by a general reduction of understory grasses. This trend is corroborated by δ13C values pointing to an increased contribution of C3 plants during the mid-to late Holocene. Peak aridity occurred around 2 ka BP, followed by a return to a generally wetter climate possibly linked to enhanced Indian Ocean Monsoon strength. During the last millennium, increased anthropogenic activity, i.e., deforestation and agriculture is indicated by the pollen data, in agreement with intensified human impact recorded for the region. The magnitude of δD change (40‰) between peak wet conditions and late Holocene aridity is in line with other regional δD records of East Africa influenced by the CAB. The timing and pace of aridification parallels those of African and Indian monsoon records indicating a gradual response to local insolation change. Our new record combining plant-wax δD and δ13C values with pollen highlights the sensitive responses of the regional vegetation to precipitation changes in the Ethiopian highlands.


CATENA ◽  
2022 ◽  
Vol 209 ◽  
pp. 105852
Author(s):  
Fang Tian ◽  
Wei Wang ◽  
Natalia Rudaya ◽  
Xingqi Liu ◽  
Xianyong Cao

The Holocene ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 1450-1458 ◽  
Author(s):  
Yunpeng Yang ◽  
Dongliang Zhang ◽  
Aizhi Sun ◽  
Wei Wang ◽  
Bo Lan ◽  
...  

We here preset a result of high-resolution pollen data of a lacustrine-peat sediment core from Yushenkule (YSKL) Peat, southern Altai Mountains, northwestern China. We aim to reconstruct the palaeovegetation and palaeoclimate variations in the southern Altai Mountains and further evaluate the role of autogenic process of the raised bog itself in driving the local vegetation dynamics. The pollen data of YSKL core-2 show two major vegetation stages in YSKL Peat area and the surrounding areas during the data-covering period. During the stage lasting from ~4870 to ~2550 cal. yr BP, regional vegetation was dominated by desert steppe and local vegetation in YSKL Peat was characterized by Artemisia-dominated mountain steppe. During the stage lasting from ~2550 to ~700 cal. yr BP, regional vegetation was characterized by Artemisia-dominated steppe and local vegetation in YSKL Peat was characterized by Cyperaceae-dominated wetland herbs. The Ar/Am ( Artemisia/Amaranthaceae) ratio-indicated moisture increasing trend of southern Altai Mountains can attribute to the combined effects of decreased temperature and increased precipitation. The lithologic transition from lake to peat of YSKL core-2 can be explained by invoking the variations in the areal extent of ice covers in the Altai Mountains.


1995 ◽  
Vol 69 (5) ◽  
pp. 980-993 ◽  
Author(s):  
Francine M. G. Mccarthy ◽  
Eric S. Collins ◽  
John H. Mcandrews ◽  
Helen A. Kerr ◽  
David B. Scott ◽  
...  

Cores dating back to deglaciation were taken from three lakes in Atlantic Canada and analyzed for arcellaceans and pollen. Paleotemperatures and paleo-precipitation were calculated from the pollen data using transfer functions. A sudden warming is recorded by the pollen around 10,000 years B.P., followed by a general warming to the mid Holocene Hypsithermal, then by a decrease in temperature and increase in effective precipitation to the present. The three lakes, two in western Newfoundland and one in eastern Nova Scotia, contain similar late glacial (13-10 ka), early Holocene (10-8 ka), mid Holocene (8-4 ka), and late Holocene (4-0 ka) arcellacean assemblages. Immediately following retreat of the ice sheets, Centropyxis aculeata, Centropyxis constricta, Difflugia oblonga, Difflugia urceolata, and Difflugia corona were common. The latter part of the late glacial is characterized by sparse assemblages dominated by C. aculeata. The arcellacean record thus suggests a climatic reversal in Atlantic Canada between 11,500 and 10,000 years B.P., analogous to the Younger Dryas, although this is not recorded by the pollen. Species diversity increased sharply at the beginning of the Holocene, and D. oblonga is the dominant taxon in early Holocene sediments. Difflugia oblonga remained common through the mid Holocene, but percentages of C. aculeata were very low, and Pontigulasia compressa and Difflugia bacillifera peaked in abundance during the Hypsithermal. The late Holocene is characterized by a resurgence in C. aculeata at the expense of other taxa. The increase in Heleopera sphagni and Nebella collaris since 5,000 years B.P. at the two sites in southwestern Newfoundland reflects paludification in response to increased precipitation since the Hypsithermal. Because the changes in arcellacean assemblages are regionally synchronous in all three lakes and coincide with climatically driven vegetational successions indicated by the pollen record, arcellaceans appear to respond to climatic change, and thus may be useful paleoecological and paleolimnological indicators. With their quicker generation time, these protists may be better suited than pollen to recording short-lived phenomena, like the mid-Holocene Hypsithermal and the Younger Dryas reversal.


Sign in / Sign up

Export Citation Format

Share Document