Discovery of high-level terraces of Last Glacial Lake Lisan (Dead Sea) and Eastern Mediterranean paleoclimatic implications

Author(s):  
Shahrazad Abu Ghazleh ◽  
Stephan Kempe
Radiocarbon ◽  
2007 ◽  
Vol 49 (2) ◽  
pp. 969-982 ◽  
Author(s):  
Reuven Belmaker ◽  
Mordechai Stein ◽  
Yoseph Yechieli ◽  
Boaz Lazar

Carbon isotopic and chemical compositions of freshwaters feeding the Dead Sea and the Sea of Galilee (i.e. perennial streams and floods along their stream profiles) were used to constrain the factors that dictate the reservoir ages (RA) of these lakes and the last glacial Lake Lisan. Runoff waters are characterized by high Ca2+, Mg2+, alkalinity, and radiocarbon contents (67–108 pMC), suggesting a major role for 14C atmospheric exchange reactions (carbonate rock dissolution alone will result in lower pMC values). These exchange processes were corroborated by dissolved inorganic carbon (DIC) and δ13C trends throughout the flood profile. During the evolution from rain to incipient runoff, the 14CDIC of the water increases and is accompanied by a DIC increase and δ13CDIC decrease, suggesting an addition of soil CO2, which is characterized by light δ13C and high 14C content. When incipient runoffs evolve to floods, the opposite trends are observed.It appears that the Sea of Galilee, the Dead Sea, and its last glacial precursor, Lake Lisan, maintained uniform but specific RAs of 0.8 ± 0.1, 2.3 ± 0.1, and 1.6 ± 0.3 kyr, respectively. However, applying the 14C contents of modern Dead Sea water sources to the water mass balance of Lake Lisan reveals that the RA of Lake Lisan is higher than that predicted by the mass balance. This discrepancy may reflect enhanced dissolution of carbonatic dust, changes in the amount of 14C exchanged in Judean Desert floods, or variations in the contribution of brine and saline springs. Furthermore, the small fluctuations in the Lisan RA (1.6 ± 0.3 kyr) may reflect small, short-term changes in the relative contributions of these sources.


2021 ◽  
pp. 245-300
Author(s):  
Richard B. Waitt* ◽  
Brian F. Atwater ◽  
Karin Lehnigk ◽  
Isaac J. Larsen ◽  
Bruce N. Bjornstad ◽  
...  

ABSTRACT New findings about old puzzles occasion rethinking of the Grand Coulee, greatest of the scabland channels. Those puzzles begin with antecedents of current upper Grand Coulee. By a recent interpretation, the upper coulee exploited the former high-level valley of a preflood trunk stream that had drained to the southwest beside and across Coulee anticline or monocline. In any case, a constriction and sharp bend in nearby Columbia valley steered Missoula floods this direction. Completion of upper Grand Coulee by megaflood erosion captured flood drainage that would otherwise have continued to enlarge Moses Coulee. Upstream in the Sanpoil valley, deposits and shorelines of last-glacial Lake Columbia varied with the lake’s Grand Coulee outlet while also recording scores of Missoula floods. The Sanpoil evidence implies that upper Grand Coulee had approached its present intake depth early the last glaciation at latest, or more simply during a prior glaciation. An upper part of the Sanpoil section provides varve counts between the last tens of Missoula floods in a stratigraphic sequence that may now be linked to flood rhythmites of southern Washington by a set-S tephra from Mount St. Helens. On the floor of upper Grand Coulee itself, recently found striated rock and lodgement till confirm the long-held view, which Bretz and Flint had shared, that cutting of upper Grand Coulee preceded its last-glacial occupation by the Okanogan ice lobe. A dozen or more late Missoula floods registered as sand and silt in the lee of Steamboat Rock. Some of this field evidence about upper Grand Coulee may conflict with results of recent two-dimensional simulations for a maximum Lake Missoula. In these simulations only a barrier high above the present coulee intake enables floods to approach high-water marks near Wenatchee that predate stable blockage of Columbia valley by the Okanogan lobe. Above the walls of upper Grand Coulee, scabland limits provide high-water targets for two-dimensional simulations of watery floods. The recent models sharpen focus on water sources, prior coulee incision, and coulee’s occupation by the Okanogan ice lobe. Field reappraisal continues downstream from Grand Coulee on Ephrata fan. There, some of the floods exiting lower Grand Coulee had bulked up with fine sediment from glacial Lake Columbia, upper coulee till, and a lower coulee lake that the fan itself impounded. Floods thus of debris-flow consistency carried outsize boulders previously thought transported by watery floods. Below Ephrata fan, a backflooded reach of Columbia valley received Grand Coulee outflow of small, late Missoula floods. These late floods can—by varve counts in post-S-ash deposits of Sanpoil valley—be clocked now as a decade or less apart. Still farther downstream, Columbia River gorge choked the largest Missoula floods, passing peak discharge only one-third to one-half that released by the breached Lake Missoula ice dam.


2020 ◽  
Author(s):  
Hannah Hartung ◽  
Jane M. Reed ◽  
Thomas Litt

<p>The Eastern Mediterranean, and the southern Levant in particular, is a key region for palaeoclimatological and palaeoenvironmental research due to its highly complex topography and climatic variability. Our understanding of environmental variability and its possible drivers, and the interaction with migration processes of modern <em>Homo sapiens</em> from a source area in Africa to Europe, is still limited. This is partly because continuous sediment records of sufficient age are rare across the Mediterranean Basin. The deposits of the Dead Sea represent an ideal archive to investigate palaeoenvironmental conditions during human migration phases in the Last Glacial period (MIS 4-2). </p><p>Diatoms (single-celled siliceous algae, Bacillariophyceae) have well-recognised potential to generate high-quality palaeolimnological data, especially in closed-basin saline lakes, but they remain one of the least-exploited proxies in Eastern Mediterranean palaeoclimate research. Here, we present preliminary results of a low-resolution diatom study derived from analysis of sediment deposits of Lake Lisan, the last glacial precursor of the Dead Sea. Sediment cores were recovered during an ICDP campaign in 2010/2011 from the centre of the modern Dead Sea. 18 sediment samples were analysed to investigate (a) the preservation of diatom valves in various evaporitic deposits (b) possible shifts in diatom species composition of Lake Lisan during the Last Glacial period, and (c) if diatoms can be used as proxy indicator for lake-level and, thus, palaeoclimate reconstruction. We focus on a prominent lake-level high stand of Lake Lisan at around 28-22 ka BP, which resulted in the merging Lake Lisan and freshwater Lake Kinneret.</p><p>First results show that the diatom preservation is exceptionally good in evaporitic deposits of the sediment cores from Lake Lisan, which is contradictory to the available literature. In contrast to Holocene deposits from the Dead Sea, diatoms are abundant in all analysed samples from laminated deposits from Lake Lisan: the diatom flora is dominated by halophilous benthic diatoms, such as <em>Amphora</em> spp., <em>Halamphora</em> spp. and <em>Nitzschia</em> spp. In phases of lake-level high stands of Lake Lisan, the diatom flora shifts towards a more plankton-dominated freshwater flora containing <em>Aulacoseira</em> spp. and taxa from the <em>Cyclotella-ocellata-</em>species complex.</p>


2012 ◽  
Vol 41 (3) ◽  
pp. 350-363 ◽  
Author(s):  
Cecilia Wassen

This article examines three passages from the Rule of the Congregation and the Damascus Document that pertain to the topic of children’s education. The education of children was considered important within the Qumran movement, which is evident in the curriculum in 1QSa and the fact that such a high-level official as the Examiner had a supervisory role over the teaching. In contrast to the level of education of children in Jewish society in general at the turn of the era, which appears to have been quite rudimentary and consisting mainly of memorization, it appears that children within the movement received a thorough education in both reading and writing. The content of the teaching focused on the laws of the Torah and the Book of Hagu, which is an unknown composition. It is likely that both boys and girls received some education. Cet article examine trois passages de la Règle de la Congrégation et le Document de Damas qui se rapportent au thème de l’éducation des enfants. L’éducation des enfants était considérée comme importante au sein du mouvement de Qumrân, importance qui est évidente dans le programme de 1QSa et le fait qu’un tel fonctionnaire de haut niveau que l’examinateur a eu un rôle de supervision sur l’enseignement. Contrairement au niveau de l’éducation des enfants dans la société juive en général au début de l’époque, qui semble avoir été assez rudimentaire et composé principalement de mémorisation, il semble que les enfants au sein du mouvement ont reçu une éducation complète en lecture et en écrit. Le contenu de l’enseignement a été axé sur les lois de la Torah et le Livre d’Hagu, qui est une composition inconnue. Il est probable que les garçons et les filles ont reçu une certaine éducation.


2002 ◽  
Vol 17 (7) ◽  
pp. 697-706 ◽  
Author(s):  
Brenda L. Hall ◽  
George H. Denton ◽  
Bret Overturf ◽  
Chris H. Hendy

2021 ◽  
Author(s):  
Naomi Moshe ◽  
Oded Katz ◽  
Adi Torfstein ◽  
Mor Kanari ◽  
Pere Masque ◽  
...  

<p>Submarine canyons are prominent features in continental slopes. They play an important role in sediment transport to the deep sea, as they form conduits for turbidity currents and cause landslides due their steep slopes. Such mass transport events could create geo-hazards, which compromise infrastructures along the continental slope.</p><p>Our research focuses on the Nahariya Canyon, which is part of a series of submarine canyons located along the continental slopes of the eastern Mediterranean, offshore northern Israel. This canyon is incised into the slope and does not reach the shelf. Here, we report the results from a study of two piston cores sampled in the canyon at water depths of 650m (NAC650, ~2.5m long) and 915m (NAC915, ~6m long). Chronologies were established based radiocarbon dating using slope foraminiferal shells, in addition to <sup>210</sup>Pb and OSL dating of bulk sediment. The sediments were characterized by major and trace element concentrations, mineralogy, grain size, and dead foraminiferal assemblages. We further identified the living (Rose-Bengal stained) foraminiferal species at three depths habitats (200m 650m and 915m water depth).</p><p>Our results show that both piston cores are comprised of a capping ~40 cm thick interval of fine laminated mud, deposited over the last ~150-200 years, apparently reflecting hemipelagic sedimentation. This capping interval unconformably overlays a consolidated sequence in both cores, which indicates a major sediment removal. The consolidated sequence in NAC650 is mostly homogenous and dates to the previous glacial (>140 ka), and in NAC915 the upper 70 cm of the consolidated sequence consists mud clasts dated to 27-46 ka that overlay an ‘S shape’ shear zone, which is a result of a down canyon mass wasting (debrite). Below that debrite, the sediment is mostly homogenous and dates to the last glacial (>25 ka). Broken shells of shallow benthic foraminiferal species such as Ammonia spp., Asterigerinata mamilla, Miliolids, Rosalina spp. and Sorites orbiculus are found abundantly throughout both piston-cores, varying between in-core intervals, indicating that allochthonous sediments are prevalent at those cores. Same shallow species are found also in the surface (living) assemblages, mixed with slope deep foraminiferal species. Moreover, the deep living foraminiferal shells are well preserved, in contrast to the shallow living species. Taken together, these indicate that sediment transport processes along the canyon exist to this day.</p><p>The cores suggest that the canyon is an erosive environment at least since the last glacial maximum, when the last significant mass wasting deposit is recorded. The Holocene is not represented in the records, probably due to the dominance of erosion processes, except for a thin layer of sediment deposited over the last two centuries that prevails along the entire canyon.</p>


2018 ◽  
Vol 183 ◽  
pp. 23-35 ◽  
Author(s):  
Larry N. Smith ◽  
Reza Sohbati ◽  
Jan-Pieter Buylaert ◽  
Olav B. Lian ◽  
Andrew Murray ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document