A 3585-YEAR RING-WIDTH DATING CHRONOLOGY OF QILIAN JUNIPER FROM THE NORTHEASTERN QINGHAI-TIBETAN PLATEAU

IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 379-394 ◽  
Author(s):  
Xuemei Shao ◽  
Shuzhi Wang ◽  
Haifeng Zhu ◽  
Yan Xu ◽  
Eryuan Liang ◽  
...  

This article documents the development of a precisely dated and wellreplicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated successfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research.

2010 ◽  
Vol 29 (17-18) ◽  
pp. 2111-2122 ◽  
Author(s):  
X. Shao ◽  
Y. Xu ◽  
Z.-Y. Yin ◽  
E. Liang ◽  
H. Zhu ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 473 ◽  
Author(s):  
Zhang ◽  
Zhang ◽  
Jiang ◽  
Bagila ◽  
Ainur ◽  
...  

The divergence problem, which manifests as an unstable response relationship between tree-ring growth and climatic factors under the background of global warming, poses a challenge to both the traditional theory of dendroclimatology and the reliability of climatic reconstructions based on tree-ring data. Although Schrenk spruce, as the dominant tree species in the Tianshan Mountains, is frequently applied in the dendrochronological studies, the understanding of the divergence problem of this tree species is still limited. This study conducted correlation analysis between climatic factors and tree-ring width chronologies from 51 living and healthy specimens of Schrenk spruce at sites of high and low elevation in the Alatau Mountains to determine the stability of the response. The results revealed that the tree-ring width of the spruce specimens was correlated positively with precipitation and correlated negatively with temperature. Although the variations of the two tree-ring chronologies were similar, the radial growth of the spruce at the low elevation was found more sensitive to climatic factors. Furthermore, the sensitivity of tree growth to climate demonstrated an obvious increase after an abrupt change of climate under the background of the recent warming and wetting trend. Increased drought stress, calculated based on climatic data, was regarded as the main reason for this phenomenon. The results supply the gap of the stability of climatic response of tree growth in Central Asia to some extent.


2020 ◽  
Vol 64 (12) ◽  
pp. 2127-2139
Author(s):  
Shengjie Wang ◽  
Liang Jiao ◽  
Yuan Jiang ◽  
Ke Chen ◽  
Xiaoping Liu ◽  
...  

The Holocene ◽  
2012 ◽  
Vol 23 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Minhui He ◽  
Bao Yang ◽  
Achim Bräuning ◽  
Jianglin Wang ◽  
Zhangyong Wang

Knowledge of Asian monsoon variability remains limited because of sparse instrumental data available only for short time series. Here, an updated tree-ring width record covering the period ad 1037–2009 was developed for the south-central Tibetan Plateau (TP). Correlation analysis revealed a significant relationship ( r = 0.71) between the tree-ring index and annual (previous July to current June) precipitation series for the instrumental period 1963–2008, which accounts for 50.41% of the rainfall variability. Based on a linear regression model, the longest available regional precipitation history was reconstructed. Spatial correlation between tree ring width and annual precipitation data from previous July to current June indicates that the reconstruction is representative of precipitation changes on the south-central TP. Regional wet conditions occurred during ad 1095–1161, 1376–1403, 1414–1446, 1518–1537, 1549–1572, 1702–1757, 1848–1878 and 1891–1913, while dry periods were identified during ad1189–1242, 1256–1314, 1329–1357, 1470–1491, 1573–1623, 1636–1686, 1761–1821, 1823–1847, 1879–1890 and 1931–1985. The negative correlation between our reconstructed precipitation and India monsoon rainfall series indicates the seesaw pattern over northern and southern monsoon Asia. It is suggested that solar radiation-induced sea surface temperature (SST) anomalies over the tropical Pacific influence regional rainfall patterns. The degree of this influence has been stable at the multidecadal scale during the past 1000 years.


2016 ◽  
Vol 40 ◽  
pp. 151-158 ◽  
Author(s):  
Āris Jansons ◽  
Roberts Matisons ◽  
Silva Šēnhofa ◽  
Juris Katrevičs ◽  
Jānis Jansons

2020 ◽  
Author(s):  
Giovanna Battipaglia ◽  
Arturo Pacheco ◽  
Julio Camarero ◽  
Marin Pompa-Garcia ◽  
Jordi Voltas ◽  
...  

<p>An improvement of our understanding of how tree species will respond to warmer conditions and longer droughts requires comparing their responses across different environmental settings and considering a multi-proxy approach. We used different xylem traits (tree-ring width, formation of intra-annual density fluctuations –IADFs, wood anatomy, D<sup>13</sup>C and d<sup>18</sup>O records) to retrospectively quantify these responses in three conifers inhabiting two different drought-prone areas in northwestern Mexico. A fir species (Abies durangensis) was studied in a higher altitude and more humid site and two pine species were sampled in a nearby, drier site (Pinus engelmannii, Pinus cembroides). Tree-ring-width indices (TRWi) of all the species showed very similar year-to-year variability, likely indicating a common climatic signal throughout the whole region. Wood anatomy analyses, covering over 3.5 million measured cells, showed that P. cembroides lumen area was much smaller than in the other two species and it remained constant along all the studied period (over 64 years). Alternately, cell wall was ticker in P. engelmannii which also presented the highest amount of intra-annual density fluctuations. Climate and wood anatomy correlations pointed out that lumen area was positively affected by winter precipitation for all the species, while cell-wall thickness was negatively affected by current season precipitation in all species but P. cembroides, suggesting this taxon may be better adapted to withstand drought than its coexisting conifer with thinner cell walls resulting from wet winters. Stable isotope analysis showed in P. cembroides some of the lowest cellulose-Δ<sup>13</sup>C mean values ever reported in the literature for a forest tree species, although there were no particular trend differences between the studied species. As well, no significant δ<sup>18</sup>O differences where found between the three species, but they shared a common decreasing trend. With very distinct wood anatomical traits (smaller cells, compact morphology), P. cembroides stood out as the better-adapted species in its current environment and could be less affected by future drier climate. P. engelmannii and A. durangensis showed high plasticity at wood anatomical level, allowing them to promptly respond to seasonal water availability, however this feature may provide few advantages on future climate scenarios with longer and more frequent drought spells. Further research, including xylogenesis analysis and monitoring of different populations of these tree species, would be still necessary to reach a clearer understanding of their future responses to weather patterns. Our multi-proxy approach could be used in other forests to characterize the in situ functioning of trees, e.g. growth, water use, and development of strategies for forest management under the current climate change scenarios.</p>


Sign in / Sign up

Export Citation Format

Share Document