Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles

2013 ◽  
Vol 77 ◽  
pp. 141-155 ◽  
Author(s):  
Lauren M. Simkins ◽  
Alexander R. Simms ◽  
Regina DeWitt
2018 ◽  
Vol 201 ◽  
pp. 396-408 ◽  
Author(s):  
Matteo Vacchi ◽  
Matthieu Ghilardi ◽  
Rita T. Melis ◽  
Giorgio Spada ◽  
Matthieu Giaime ◽  
...  

2019 ◽  
Author(s):  
Anastasia G. Yanchilina ◽  
Celine Grall ◽  
William B. F. Ryan ◽  
Jerry F. McManus ◽  
Candace O. Major

Abstract. The Marine Isotope Stage 3 (MIS 3) is considered a period of persistent and rapid climate and sea level variabilities during which eustatic sea level is observed to have varied by tens of meters. Constraints on local sea level during this time are critical for further estimates of these variabilities. We here present constraints on relative sea level in the Marmara and Black Sea regions in the northeastern Mediterranean, inferred from reconstructions of the history of the connections and disconnections (partial or total) of these seas together with the global ocean. We use a set of independent data from seismic imaging and core-analyses to infer that the Marmara and Black Seas remained connected persistent freshwater lakes that outflowed to the global ocean during the majority of MIS 3. Marine water intrusion during the early MIS-3 stage may have occurred into the Marmara Sea-Lake but not the Black Sea-Lake. This suggests that the relative sea level was near the paleo-elevation of the Bosporus sill and possibly slightly above the Dardanelles paleo-elevation, ~80 mbsl. The Eustatic sea level may have been even lower, considering the isostatic effects of the Eurasian ice sheet would have locally uplifted the topography of the northeastern Mediterrranean.


1999 ◽  
Vol 136 (6) ◽  
pp. 681-696 ◽  
Author(s):  
C. J. UNDERWOOD ◽  
S. F. MITCHELL

The mid-Cretaceous sediments of northeast England were deposited at the western margin of the southern North Sea Basin, with sedimentation occurring in a range of tectonic settings. Detailed analysis of the areal distribution and sedimentary facies of Aptian to earliest Cenomanian sediments has allowed the pattern of onlap onto the Market Weighton structural high and changes in relative sea level to be documented. Successive onlap episodes during the Early Aptian, Late Aptian and Early Albian culminated in the final flooding of the structure during the Late Albian (varicosum Subzone). Sea-level curves generated from coastal onlap patterns are difficult to relate to published ‘global’ sea-level curves due to the high frequency of the fluctuations in relative sea level observed. Despite this, detailed correlation and analysis of sedimentological events suggest that even the most expanded, basinal succession is relatively incomplete. This study has also shown that the change from dominantly syn-tectonic to dominantly post-tectonic sedimentation style occurred in the late Early Albian.


1997 ◽  
Vol 109 (9) ◽  
pp. 1116-1133 ◽  
Author(s):  
Steven L. Forman ◽  
Richard Weihe ◽  
David Lubinski ◽  
Gennady Tarasov ◽  
Sergey Korsun ◽  
...  

1993 ◽  
Vol 30 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Philip R. Hill ◽  
Arnaud Héquette ◽  
Marie-Hélène Ruz

New radiocarbon ages pertaining to the Holocene sea-level history of the Canadian Beaufort shelf are presented. The ages were obtained on samples of freshwater and tidal-marsh peat beds from offshore boreholes and shallow cores in the coastal zone and on molluscs and a single piece of wood deposited in foraminifera-bearing marine sediments. Although none of the samples record directly the position of relative sea level, the suite of ages constrains the regional curve sufficiently to suggest a faster rate of mid Holocene sea level rise (7–14 mm/a) than previously thought. The rate of relative rise slowed markedly in the last 3000 years, approaching the present at a maximum probable rate of 2.5 mm/a.


2003 ◽  
Vol 60 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Antony J. Long ◽  
David H. Roberts ◽  
Morten Rasch

AbstractRelative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300–9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.


Sign in / Sign up

Export Citation Format

Share Document