scholarly journals Quartz mid-temperature thermoluminescence configurational coordinate model

2022 ◽  
pp. 106701
Author(s):  
Owen M. Williams ◽  
Nigel A. Spooner
Keyword(s):  
Author(s):  
Tatiana Shulga ◽  
Tatiana Shulga ◽  
Leonid Cherkesov ◽  
Leonid Cherkesov

In this work, the waves and currents generated by prognostic wind in the Sea of Azov are investigated using a three-dimensional nonlinear sigma-coordinate model. The mathematical model was also used for studying the transformation of passive admixture in the Sea of Azov, caused by the spatiotemporal variations in the fields of wind and atmospheric pressure, obtained from the prediction SKIRON model. Comparison of the results of numerical calculations and the data of field observations, obtained during the action of the wind on a number of hydrological stations was carried out. The evolutions of storm surges, velocities of currents and the characteristics of the pollution region at different levels of intensity of prognostic wind and stationary currents were found. The results of a comprehensive study allow reliably estimate modern ecological condition of offshore zones, develop predictive models of catastrophic water events and make science-based solutions to minimize the possible damage.


Development ◽  
1981 ◽  
Vol 66 (1) ◽  
pp. 117-126
Author(s):  
Jane Karlsson ◽  
R. J. Smith

It is a general rule that of two complementary Drosophila imaginal disc fragments, one regenerates and the other duplicates. This paper reports an investigation of an exception to this rule. Duplicating fragments from the periphery of the wing disc which lacked presumptive notum were found to regenerate notum structures during and after duplication. The propensity for this was greatest in fragments lying close to the presumptive notum, with the exception of a fragment confined to the posterior compartment, which did not regenerate notum. Structures were added sequentially, and regeneration stopped once most of the notum was present. These results are not easily explained by the polar coordinate model, which states that regeneration cannot occur from duplicating fragments. Since compartments appear to be involved in this type of regeneration as in others, it is suggested that a new type of model is required, one which permits simultaneous regeneration and duplication, and assigns a major role to compartments.


1988 ◽  
Vol 116 (7) ◽  
pp. 1493-1518 ◽  
Author(s):  
Fedor Mesinger ◽  
Zaviša I. Janjić ◽  
Slobodan Ničković ◽  
Dušanka Gavrilov ◽  
Dennis G. Deaven

Development ◽  
1986 ◽  
Vol 98 (1) ◽  
pp. 137-165
Author(s):  
Vernon French ◽  
Tamara F. Rowlands

After removal of a transverse strip of ventral thorax from the beetle, Tenebrio molitor, interaction occurred between epidermis posterior to the mesothoracic leg and that anterior to the metathoracic leg. Depending on the size and position of the excision, this interaction resulted in either the regeneration of the extirpated tissue or its replacement by an A/P reversed pattern of sclerites and supernumerary leg. By either route, local pattern continuity was restored between the normal meso- and metathoracic legs. Similarly, when a leg plus adjacent tissue was extirpated, continuity was restored by leg regeneration or by formation of an A/P reversed duplication of sclerites. The results of these strip excisions can be understood in terms of two current models of the ventral thorax (the Boundary Model and the Polar Coordinate Model), each of which postulates a distinct compartment or region intervening between the epidermis surrounding the bases of successive legs. However, the models do not explain the large differences in the frequency of formation of the duplication/deletion pattern after excisions of different widths. The results are also compatible with a different model, involving an A–P sequence of positional values similar to that proposed for the abdominal segment. Regeneration would restore continuity within the sequence by the shortest route, forming either the midsegment (including the leg) or the intersegmental region. The meso- and metathorax differ in the structure of the ventral sclerites and in the segmentation of the tarsus of the leg. The structures regenerated after the various excisions show that the segment border is not crossed during regeneration and indicate that an A/P compartment border running through the leg is usually also respected. There is no sign, however, of a third line of lineage restriction that would indicate a subdivision of the segment into three compartments (as proposed in the Boundary Model).


Author(s):  
D. Salinas ◽  
E. E. Cooper

A numerical simulation of the aerothermal characteristics of a gas turbine engine test cell is presented. The three-dimensional system is modeled using the PHOENICS computational fluid dynamics code. Results predict the velocity field, temperatures, pressures, kinetic energy of turbulence, and dissipation rates of turbulent kinetic energy. Numerical results from two versions, a cartesian coordinate model and a body fitted coordinate model, are compared to experimental data. The comparison shows good quantitative and very good qualitative agreement, suggesting that numerical modeling would be useful in the preliminary design of gas turbine test facilities.


Sign in / Sign up

Export Citation Format

Share Document