Estimation of cooling water activation in high-energy heavy ion medical accelerator

2021 ◽  
Vol 181 ◽  
pp. 109258
Author(s):  
Oyeon Kum
Author(s):  
L.E. Murr

The production of void lattices in metals as a result of displacement damage associated with high energy and heavy ion bombardment is now well documented. More recently, Murr has shown that a void lattice can be developed in natural (colored) fluorites observed in the transmission electron microscope. These were the first observations of a void lattice in an irradiated nonmetal, and the first, direct observations of color-center aggregates. Clinard, et al. have also recently observed a void lattice (described as a high density of aligned "pores") in neutron irradiated Al2O3 and Y2O3. In this latter work, itwas pointed out that in order that a cavity be formed,a near-stoichiometric ratio of cation and anion vacancies must aggregate. It was reasoned that two other alternatives to explain the pores were cation metal colloids and highpressure anion gas bubbles.Evans has proposed that void lattices result from the presence of a pre-existing impurity lattice, and predicted that the formation of a void lattice should restrict swelling in irradiated materials because it represents a state of saturation.


Author(s):  
Charles W. Allen ◽  
Robert C. Birtcher

The uranium silicides, including U3Si, are under study as candidate low enrichment nuclear fuels. Ion beam simulations of the in-reactor behavior of such materials are performed because a similar damage structure can be produced in hours by energetic heavy ions which requires years in actual reactor tests. This contribution treats one aspect of the microstructural behavior of U3Si under high energy electron irradiation and low dose energetic heavy ion irradiation and is based on in situ experiments, performed at the HVEM-Tandem User Facility at Argonne National Laboratory. This Facility interfaces a 2 MV Tandem ion accelerator and a 0.6 MV ion implanter to a 1.2 MeV AEI high voltage electron microscope, which allows a wide variety of in situ ion beam experiments to be performed with simultaneous irradiation and electron microscopy or diffraction.At elevated temperatures, U3Si exhibits the ordered AuCu3 structure. On cooling below 1058 K, the intermetallic transforms, evidently martensitically, to a body-centered tetragonal structure (alternatively, the structure may be described as face-centered tetragonal, which would be fcc except for a 1 pet tetragonal distortion). Mechanical twinning accompanies the transformation; however, diferences between electron diffraction patterns from twinned and non-twinned martensite plates could not be distinguished.


2000 ◽  
Vol 15 (15) ◽  
pp. 2269-2288
Author(s):  
SANATAN DIGAL ◽  
RAJARSHI RAY ◽  
SUPRATIM SENGUPTA ◽  
AJIT M. SRIVASTAVA

We demonstrate the possibility of forming a single, large domain of disoriented chiral condensate (DCC) in a heavy-ion collision. In our scenario, rapid initial heating of the parton system provides a driving force for the chiral field, moving it away from the true vacuum and forcing it to go to the opposite point on the vacuum manifold. This converts the entire hot region into a single DCC domain. Subsequent rolling down of the chiral field to its true vacuum will then lead to emission of a large number of (approximately) coherent pions. The requirement of suppression of thermal fluctuations to maintain the (approximate) coherence of such a large DCC domain, favors three-dimensional expansion of the plasma over the longitudinal expansion even at very early stages of evolution. This also constrains the maximum temperature of the system to lie within a window. We roughly estimate this window to be about 200–400 MeV. These results lead us to predict that extremely high energy collisions of very small nuclei (possibly hadrons) are better suited for observing signatures of a large DCC. Another possibility is to focus on peripheral collisions of heavy nuclei.


2003 ◽  
Vol 554 (1-2) ◽  
pp. 21-27 ◽  
Author(s):  
Alex Krasnitz ◽  
Yasushi Nara ◽  
Raju Venugopalan

1984 ◽  
Vol 71 (6) ◽  
pp. 1429-1431 ◽  
Author(s):  
Y. Kitazoe ◽  
O. Hashimoto ◽  
H. Toki ◽  
Y. Yamamura ◽  
M. Sano

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
T. Niida ◽  
Y. Miake

AbstractThe progress over the 30 years since the first high-energy heavy-ion collisions at the BNL-AGS and CERN-SPS has been truly remarkable. Rigorous experimental and theoretical studies have revealed a new state of the matter in heavy-ion collisions, the quark-gluon plasma (QGP). Many signatures supporting the formation of the QGP have been reported. Among them are jet quenching, the non-viscous flow, direct photons, and Debye screening effects. In this article, selected signatures of the QGP observed at RHIC and the LHC are reviewed.


2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Hong-Zhong Wu ◽  
Long-Gang Pang ◽  
Xu-Guang Huang ◽  
Qun Wang

2005 ◽  
Vol 908 ◽  
Author(s):  
Gary A. Glass ◽  
Bibhudutta Rout ◽  
Alexander D. Dymnikov ◽  
Elia V. Eschenazi ◽  
Richard Greco ◽  
...  

AbstractAn overview of the present state of high energy focused ion beam (HEFIB) system technology, nanoprobe system design and specific ion beam writing applications will be presented. In particular, the combination of P-beam, heavy-ion writing and ion implantation to produce microstructures in resists and silicon will be demonstrated.Heretofore, the development of HEFIB technology worldwide has progressed through a series of developments at independent research facilities, each having relatively narrow and mostly isolated, research purposes. However, a complete, versatile HEFIB nanoprobe system capable of both analysis and modification will require the combination of several component systems, each with specialized technology, and significant advances in the design of a complete system can only be expected from an effort that includes a coordinated development of the component parts.


Sign in / Sign up

Export Citation Format

Share Document