scholarly journals Interface model-based configuration design of mechatronic systems for industrial manufacturing applications

2019 ◽  
Vol 59 ◽  
pp. 373-384 ◽  
Author(s):  
Chen Zheng ◽  
Xiansheng Qin ◽  
Benoît Eynard ◽  
Jing Li ◽  
Jing Bai ◽  
...  
Author(s):  
Adarsh Venkiteswaran ◽  
Sayed Mohammad Hejazi ◽  
Deepanjan Biswas ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Industries are continuously trying to improve the time to market through automation and optimization of existing product development processes. Large companies vow to save significant time and resources through seamless communication of data between design, manufacturing, supply chain and quality assurance teams. In this context, Model Based Definition/Engineering (MBD) / (MBE) has gained popularity, particularly in its effort to replace traditional engineering drawings and documentations with a unified digital product model in a multi-disciplinary environment. Widely used 3D data exchange models (STEP AP 203, 214) contains mere shape information, which does not provide much value for reuse in downstream manufacturing applications. However, the latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering” aims to support smart manufacturing by capturing semantic Product Manufacturing Information (PMI) within the 3D model and also helping with long-term archival. As a primary, for interoperability of Geometric Dimensions & Tolerances (GD&T) through AP 242, CAx Implementor Forum has published a set of recommended practices for the implementation of a translator. In line with these recommendations, this paper discusses the implementation of an AP 203 to AP 242 translator by attaching semantic GD&T available in an in-house Constraint Tolerance Graph (CTF) file. Further, semantic GD&T data can be automatically consumed by downstream applications such as Computer Aided Process Planning (CAPP), Computer Aided Inspection (CAI), Computer Aided Tolerance Systems (CATS) and Coordinate Measuring Machines (CMM). Also, this paper will briefly touch base on the important elements that will constitute a comprehensive product data model for model-based interoperability.


Author(s):  
Chang-Su Kim ◽  
So-Ra Yu ◽  
Sung-Han Kim ◽  
Seung-Yun Lee ◽  
Hoe-Kyung Jung

2014 ◽  
Vol 1018 ◽  
pp. 539-546 ◽  
Author(s):  
Hermann Meissner ◽  
Marcel Cadet ◽  
Nicole Stephan ◽  
Christian Bohr

The shift to satisfied customer markets forces manufacturers to offer customised products. Moreover, product lifecycles are shortened, which requires a faster development of products and corresponding production systems. Both challenges amplify complexity in production. This complexity is usually confronted with flexibility. A new approach offering decentralised structures, and thereby flexibility, comes from cybertronic systems (CTS), which are further developed mechatronic systems with the capability to communicate through open networks with other such mechatronic systems. Up to now no integrated development process to engineer cybertronic products (CTP) and production systems (CTPS) has been developed, although such a process is essential to use their beneficial properties for today’s market conditions. Therefore, research is conducted in the research project mecPro². First, the properties of cybertronic systems are investigated and dissociated from those of mechatronic systems. Based on these properties, the connections of CTP and CTPS are analysed and a systematics for description for both is identified. With this the model-based development processes of CTP and CTPS can be further defined as well as their intersections and afterwards implemented in a data model. Finally, the development process is summarised in a product lifecycle management software to support the development process.


2013 ◽  
Vol 198 ◽  
pp. 533-538
Author(s):  
Robert Buchta ◽  
Xiao Bo Liu-Henke

For an efficient design process of complex mechatronic systems a continuous and verification-orientated model-based methodology with Model-in-the-Loop (MiL), Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation is suitable. Using such an approach the real-time capable nonlinear multi-body system model of the entire vehicle with the electric power train and the identification of the physical parameters are described. A continuous appliance of the introduced model is a contribution for the frontloading and guarantees a time and cost efficient mechatronic design approach.


Sign in / Sign up

Export Citation Format

Share Document