Matching topographic features in 2-D images for model-based recognition in manufacturing applications

Author(s):  
H. Zghal ◽  
D.R. Strong ◽  
H.A. ElMaraghy
Author(s):  
Adarsh Venkiteswaran ◽  
Sayed Mohammad Hejazi ◽  
Deepanjan Biswas ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Industries are continuously trying to improve the time to market through automation and optimization of existing product development processes. Large companies vow to save significant time and resources through seamless communication of data between design, manufacturing, supply chain and quality assurance teams. In this context, Model Based Definition/Engineering (MBD) / (MBE) has gained popularity, particularly in its effort to replace traditional engineering drawings and documentations with a unified digital product model in a multi-disciplinary environment. Widely used 3D data exchange models (STEP AP 203, 214) contains mere shape information, which does not provide much value for reuse in downstream manufacturing applications. However, the latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering” aims to support smart manufacturing by capturing semantic Product Manufacturing Information (PMI) within the 3D model and also helping with long-term archival. As a primary, for interoperability of Geometric Dimensions & Tolerances (GD&T) through AP 242, CAx Implementor Forum has published a set of recommended practices for the implementation of a translator. In line with these recommendations, this paper discusses the implementation of an AP 203 to AP 242 translator by attaching semantic GD&T available in an in-house Constraint Tolerance Graph (CTF) file. Further, semantic GD&T data can be automatically consumed by downstream applications such as Computer Aided Process Planning (CAPP), Computer Aided Inspection (CAI), Computer Aided Tolerance Systems (CATS) and Coordinate Measuring Machines (CMM). Also, this paper will briefly touch base on the important elements that will constitute a comprehensive product data model for model-based interoperability.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Sudipto Ghoshal ◽  
Somnath Deb ◽  
Deepak Haste ◽  
Andrew Hess ◽  
Feraidoon Zahiri ◽  
...  

Qualtech Systems, Inc. (QSI)’s integrated tool set, consisting of TEAMS-Designer® and TEAMS-RDS® provides a comprehensive model-based systems engineering approach that can be deployed for fault management throughout the equipment life-cycle – from its design for fault management to condition-based maintenance of the equipment. The TEAMS® failure-cause effect dependency model is a digital twin representation of the equipment in its failure-space and allows for various types of analyses such as testability, serviceability, failure propagation and others that facilitate fault management design of the equipment. The same model is deployed through TEAMS-RDS® for condition monitoring, prognostics, real-time health assessment, failure impact analysis, guided troubleshooting and others that facilitate condition-based maintenance as well as ensure efficient and rapid maintenance actions. In this paper, we present an overview of QSI’s integrated toolset, with a focus on a systematic model-based approach towards an automated development of Failure Effects and Criticality Analysis (FMECA) and other relevant analyses for the equipment, for an improved understanding of failure effects and their causality at the system-level. The eventual objective here is improved equipment design as well as designing improved failure detection, failure isolation and failure mitigation. The paper will also discuss examples of such real-world applications for smart manufacturing in major depot maintenance facilities in the US. A subsequent paper will focus on the development and integration of process-level and equipment-level FMECAs for Smart Manufacturing applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jay Meyer ◽  
Venkat Malepati ◽  
Caleb Hudson ◽  
Somnath Deb ◽  
...  

Qualtech Systems, Inc. (QSI)’s integrated tool set, consisting of TEAMS-Designer® and TEAMS-RDS® provides a comprehensive digital twin-driven and model-based systems engineering approach that can be deployed for fault management throughout the equipment life-cycle – from its design for fault management to condition-based maintenance of the deployed equipment. In this paper, we present QSI’s approach towards adapting and enhancing their existing model-based systems engineering (MBSE) approach towards a comprehensive digital twin that incorporates constructs necessary for development of a Process Failure Modes and Criticality Analysis (P-FMECA) and integrates that with an Equipment FMECA. The paper will discuss the various levels of automation towards incorporation of these model constructs and their reuse towards automation of the development of the different digital twins and subsequently the automatic generation of the combined Process and Equipment FMECA. This automated ability to develop the integrated FMECA that incorporates both Process-level Failure Modes and Equipment-level Failure Modes allows the system designer and operators to correlate and identify process failures down to their root causes at the equipment-level and thereby producing a comprehensive actionable systems-level view of the entire Smart Manufacturing facility from a fault management design and operations perspective. The paper will present the application of this novel technology for the Advanced Metal Finishing Facility (AMFF) at the Warner-Robins Air Logistics Complex (WR-ALC) in Robins Air Force Base, Georgia, as part of WR-ALC’s initiative towards model-based enterprise (MBE) and smart manufacturing.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


Author(s):  
O. T. Inal ◽  
L. E. Murr

When sharp metal filaments of W, Fe, Nb or Ta are observed in the field-ion microscope (FIM), their appearance is differentiated primarily by variations in regional brightness. This regional brightness, particularly prominent at liquid nitrogen temperature has been attributed in the main to chemical specificity which manifests itself in a paricular array of surface-atom electron-orbital configurations.Recently, anomalous image brightness and streaks in both fcc and bee materials observed in the FIM have been shown to be the result of surface asperities and related topographic features which arise by the unsystematic etching of the emission-tip end forms.


Author(s):  
Ya Chen ◽  
Geoffrey Letchworth ◽  
John White

Low-temperature high-resolution scanning electron microscopy (cryo-HRSEM) has been successfully utilized to image biological macromolecular complexes at nanometer resolution. Recently, imaging of individual viral particles such as reovirus using cryo-HRSEM or simian virus (SIV) using HRSEM, HV-STEM and AFM have been reported. Although conventional electron microscopy (e.g., negative staining, replica, embedding and section), or cryo-TEM technique are widely used in studying of the architectures of viral particles, scanning electron microscopy presents two major advantages. First, secondary electron signal of SEM represents mostly surface topographic features. The topographic details of a biological assembly can be viewed directly and will not be obscured by signals from the opposite surface or from internal structures. Second, SEM may produce high contrast and signal-to-noise ratio images. As a result of this important feature, it is capable of visualizing not only individual virus particles, but also asymmetric or flexible structures. The 2-3 nm resolution obtained using high resolution cryo-SEM made it possible to provide useful surface structural information of macromolecule complexes within cells and tissues. In this study, cryo-HRSEM is utilized to visualize the distribution of glycoproteins of a herpesvirus.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Sign in / Sign up

Export Citation Format

Share Document