Wave and tidal energy resource assessment in Uruguayan shelf seas

2017 ◽  
Vol 114 ◽  
pp. 18-31 ◽  
Author(s):  
Rodrigo Alonso ◽  
Michelle Jackson ◽  
Pablo Santoro ◽  
Mónica Fossati ◽  
Sebastián Solari ◽  
...  
2020 ◽  
Vol 8 (6) ◽  
pp. 411
Author(s):  
Zhaoqing Yang ◽  
Taiping Wang ◽  
Ziyu Xiao ◽  
Levi Kilcher ◽  
Kevin Haas ◽  
...  

Numerical models have been widely used for the resource characterization and assessment of tidal instream energy. The accurate assessment of tidal stream energy resources at a feasibility or project-design scale requires detailed hydrodynamic model simulations or high-quality field measurements. This study applied a three-dimensional finite-volume community ocean model (FVCOM) to simulate the tidal hydrodynamics in the Passamaquoddy–Cobscook Bay archipelago, with a focus on the Western Passage, to assist tidal energy resource assessment. IEC Technical specifications were considered in the model configurations and simulations. The model was calibrated and validated with field measurements. Energy fluxes and power densities along selected cross sections were calculated to evaluate the feasibility of the tidal energy development at several hotspots that feature strong currents. When taking both the high current speed and water depth into account, the model results showed that the Western Passage has great potential for the deployment of tidal energy farms. The maximum extractable power in the Western Passage was estimated using the Garrett and Cummins method. Different criteria and methods recommended by the IEC for resource characterization were evaluated and discussed using a sensitivity analysis of energy extraction for a hypothetical tidal turbine farm in the Western Passage.


2015 ◽  
Vol 76 ◽  
pp. 212-219 ◽  
Author(s):  
V. Sanil Kumar ◽  
T.R. Anoop

Author(s):  
Jérôme Thiébot ◽  
D. S. Coles ◽  
Anne-Claire Bennis ◽  
Nicolas Guillou ◽  
Simon Neill ◽  
...  

The tides are a predictable, renewable, source of energy that, if harnessed, can provide significant levels of electricity generation. The Alderney Race (AR), with current speeds that exceed 5 m s −1 during spring tides, is one of the most concentrated regions of tidal energy in the world, with the upper-bound resource estimated at 5.1 GW. Owing to its significance, the AR is frequently used for model case studies of tidal energy conversion, and here we review these model applications and outcomes. We examine a range of temporal and spatial modelling scales, from regional models applied to resource assessment and characterization, to more detailed models that include energy extraction and array optimization. We also examine a range of physical processes that influence the tidal energy resource, including the role of waves and turbulence in tidal energy resource assessment and loadings on turbines. The review discusses model validation, and covers a range of numerical modelling approaches, from two-dimensional to three-dimensional tidal models, two-way coupled wave-tide models, Large Eddy Simulation (LES) models, and the application of optimization techniques. The review contains guidance on model approaches and sources of data that can be used for future studies of the AR, or translated to other tidal energy regions. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


Author(s):  
Michael Lochinvar Sim Abundo ◽  
Chew Kok Hon ◽  
Martin Koh Wei Xiang ◽  
Oh Boon Kiat ◽  
Wilbur Tan Hong Huat

2021 ◽  
Vol 11 (3) ◽  
pp. 7233-7239
Author(s):  
E. V. Palconit ◽  
J . R. Villanueva ◽  
N. J. Enano ◽  
M. J. Buhali ◽  
A. C. Mascariñas ◽  
...  

During the last years, there are ongoing efforts on the development of tidal energy conversion systems in the Philippines. This study conducts tidal energy resource assessment in the Pakiputan Strait following a methodology outlined as stage 2a tidal resource assessment published by the European Marine Energy Centre (EMEC). The study assessed the preliminary results of the tidal velocities at Pakiputan Strait with a mean spring peak velocity (Vmsp) of 1.7m/s at 3m from the water surface from 15 days of continuous data collection using a seabed-mounted acoustic Doppler current profiler. This corresponded to an estimated Annual Energy Production (AEP) of 1350kWh/y for 1m2 of capture area of the generic device. Sensitivity analysis showed that the spatial distribution of hydrodynamic model results does not vary significantly with variations in certain input parameters. It further showed that a 10% decrease in the nominal value of Vmsp on-site led to a 15% decrease in the nominal value of AEP, while a 10% increase in the nominal value of Vmsp led to a 30% increase in the nominal value of AEP, assuming that the considered Vmsp still corresponded to the velocity distribution from observations. A static survey and the use of computational fluid dynamics modeling are recommended to further enhance the analysis of the study.


Author(s):  
Anna Monzikova ◽  
Anna Monzikova ◽  
Vladimir Kudryavtsev Vladimir ◽  
Vladimir Kudryavtsev Vladimir ◽  
Alexander Myasoedov ◽  
...  

“Wind-shadowing” effects in the Gulf of Finland coastal zone are analyzed using high resolution Envisat Synthetic Aperture Radar (SAR) measurements and model simulations. These effects are related to the internal boundary layer (IBL) development due to abrupt change the surface roughness at the sea-land boundary. Inside the "shadow" areas the airflow accelerates and the surface wind stress increases with the fetch. Such features can be revealed in SAR images as dark areas adjacent to the coastal line. Quantitative description of these effects is important for offshore wind energy resource assessment. It is found that the surface wind stress scaled by its equilibrium value (far from the coast) is universal functions of the dimensionless fetch Xf/G. Wind stress reaches an equilibrium value at the distance Xf/G of about 0.4.


2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Mirza Salman Baig ◽  
Zaheer Uddin ◽  
Ambreen Insaf

2021 ◽  
Vol 13 (11) ◽  
pp. 2070
Author(s):  
Ana Basañez ◽  
Vicente Pérez-Muñuzuri

Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independently.


Sign in / Sign up

Export Citation Format

Share Document