Exergo-environmental life cycle assessment of biodiesel production from mutton tallow transesterification

2018 ◽  
Vol 127 ◽  
pp. 74-83 ◽  
Author(s):  
Nahla Faleh ◽  
Zouhour Khila ◽  
Zeineb Wahada ◽  
Marie-Noëlle Pons ◽  
Ammar Houas ◽  
...  
2020 ◽  
Vol 13 (4) ◽  
pp. 275-294
Author(s):  
Konstantin Pikula ◽  
Alexander Zakharenko ◽  
Antonios Stratidakis ◽  
Mayya Razgonova ◽  
Alexander Nosyrev ◽  
...  

Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


2021 ◽  
pp. 128580
Author(s):  
Ioan-Robert Istrate ◽  
Rafael Juan ◽  
Mario Martin-Gamboa ◽  
Carlos Domínguez ◽  
Rafael A. García-Muñoz ◽  
...  

2015 ◽  
Vol 26 (3) ◽  
pp. 389-406 ◽  
Author(s):  
Maria Francesca Milazzo ◽  
Francesco Spina

Purpose – The purpose of this paper is to quantify the human health impacts of soy-biodiesel production with the aim to discuss about its environmental sustainability. Design/methodology/approach – The integrated use of two current approaches, risk assessment (RA) and life cycle assessment (LCA), has allowed improvement of the potentialities of both in obtaining a more complete analysis. The implementation of a life cycle indicator for the assessment of the impacts on the human health, integrating the features of both approaches, is the main focus of this paper. Findings – It has been found that, although the biodiesel is a green fuel, it has some criticalities in its life cycle, which cannot be disregarded. In fact, even if biodiesel is essentially a clean fuel there are some phases, prior to the industrial phase, that can cause negative effects on human health and ecosystems. Practical implications – Results suggest some measures which can be adopted to substantially reduce human health impacts. Further alternative could be analysed in future to gain more insight about the use of biodiesel fuels. Originality/value – The estimation of the impacts of a process producing biodiesel has been made by using a novel approach. The novelty is associated with the calculation of the impacts on human health by using the transfer factors applied in RA. The use of such factors, properly modified in order to estimate the impacts on a wider scale than a site-dimension, allows defining a holistic approach, as LCA and RA are used as complete units but at the same time can be related to each other.


Sign in / Sign up

Export Citation Format

Share Document