Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode

2018 ◽  
Vol 127 ◽  
pp. 377-385 ◽  
Author(s):  
Jun Yang ◽  
Giorgio Pavesi ◽  
Xiaohua Liu ◽  
Tian Xie ◽  
Jun Liu
Author(s):  
ZHAO Xiaoran ◽  
XIAO Yexiang ◽  
XU Jincai ◽  
XU Wei ◽  
SUN Jianbo ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guidong Li ◽  
Yang Wang ◽  
Puyu Cao ◽  
Jinfeng Zhang ◽  
Jieyun Mao

The pumped hydro energy storage is the most effective way to store large-scale electricity and has been widely used in the world. As the key equipment in the pumped hydro energy storage, it is significant and urgent to improve the performance and operation stability of the pump-turbine. In this study, the effect of runners with and without splitter blade on the performances and inner flow characteristics of a pump-turbine in pump mode was analyzed by the method of numerical calculation. The results suggest that larger tangential velocity at runner outlet and higher pressure at the trailing edge of pressure side in splitter blade runner scheme contribute to higher head. The area of backflow at runner outlet, the highest values of entropy generation rate, and vorticity distribution in splitter blade runner scheme are well smaller than those in prototype runner without splitter blade, which is conducive to improving model performance.


2018 ◽  
Vol 11 (3) ◽  
pp. 224-233 ◽  
Author(s):  
Jun Yang ◽  
Tian Xie ◽  
Pavesi Giorgio ◽  
Xiaohua Liu ◽  
Jun Liu

Author(s):  
De-You Li ◽  
Lei Han ◽  
Hong-Jie Wang ◽  
Ru-Zhi Gong ◽  
Xian-Zhu Wei ◽  
...  

To obtain more accurate flow characteristics of pump turbines, the method of large eddy simulation with wall-adapting local eddy viscosity model is applied in simulating several operating points in the pump mode. Firstly, based on the experimental validation, the method of large eddy simulation could better predict the external performance and internal flow characteristics in a pump turbine in the pump mode compared with the method of Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Then, flow characteristics under 1.00 QBEP (best efficiency point), 0.91 QBEP, 0.88 QBEP, and 0.85 QBEP operating points are investigated to find out the causes of the head drop in the energy-discharge curve through large eddy simulation. The detailed analysis reveals that the head drop at the point 0.85 QBEP is related to the recirculation flow at the runner inlet. Finally, unsteady studies confirm that vortex movement at the runner inlet lead to the variation of the amplitudes and directions of the velocity, which generates the rotation of the separation vortices in the runner and stay vane channels.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Du Jianguo ◽  
Guanghui Chang ◽  
Daniel Adu ◽  
Ransford Darko ◽  
Muhammad A. S. Khan ◽  
...  

Using a pump in reverse mode as a hydraulic turbine remains an alternative for hydropower generation in meeting energy needs, especially for the provision of electricity to remote and rural settlements. The primary challenge with small hydroelectric systems is attributed to the high price of smaller size hydraulic turbines. A specific commercial pump model, with a flow rate of 12.5 m3/h, head 32 m, pressure side diameter of 50 mm, impeller out, and inlet diameters of 160 mm and 6 mm, respectively, was chosen for this research. This research aimed to investigate a pump’s flow characteristics as a turbine to help select a suitable pump to be used as a turbine for micro- or small hydropower construction. Numerical methodologies have been adopted to contribute to the thoughtful knowledge of pressure and velocity distribution in the pump turbine performance. In this study, the unsteady flow relations amongst the rotating impeller and stationary volute of the centrifugal pump made up four blades and four splitters. Intermittent simulation results of pressure and velocity flow characteristics were studied considering diverse impeller suction angles. The study was conducted by considering a wide range of rotational speeds starting from 750 rpm to 3250 rpm. From the results, it was found that PAT operation was improved when operated at low speeds compared to high-speed operation. Thus, speeds between 1500 rpm and 2000 rpm were suitable for PAT performance. This research helps to realize the unsteady flow physiognomies, which provide information for future research on PAT. This study makes useful facts available which could be helpful for the pump turbine development. Future studies should focus on cost analysis and emission generation in energy generation.


Author(s):  
Jun-Won Suh ◽  
Seung-Jun Kim ◽  
Young-Seok Choi ◽  
Jin-Hyuk Kim ◽  
Won-Gu Joo ◽  
...  

Abstract Nowadays, pumped-storage power stations require high flexibility and reliability in operation under off-design conditions, especially in the pump mode. When a pump-turbine operates under various part load conditions in pump mode, highly dynamic phenomenon such as stationary vortex and rotating stall occur. Therefore, the performance characteristics in pump mode are vital for the safe and effective operation. A number of studies have been conducted to investigate the flow characteristics in turbine or pump mode under different GVOs through numerical simulations. However, the studies about influence of the position of interface and interface condition on the pump characteristics of pump-turbines are not completely clear. In this paper, the three-dimensional steady and unsteady Reynolds-averaged Navier–Stokes equations were solved for a detailed analysis of the influence of interface conditions with various guide vane opening conditions in pump mode. To ensure the reliability of the numerical analysis, the numerical results were validated in comparison with the experimental data.


2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


Sign in / Sign up

Export Citation Format

Share Document