Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel

Author(s):  
Wai Hong Leong ◽  
Worapon Kiatkittipong ◽  
Man Kee Lam ◽  
Kuan Shiong Khoo ◽  
Pau Loke Show ◽  
...  
2020 ◽  
Vol 22 (19) ◽  
pp. 6437-6443
Author(s):  
Cheng-Kou Liu ◽  
Meng-Yi Chen ◽  
Xin-Xin Lin ◽  
Zheng Fang ◽  
Kai Guo

A catalyst-, oxidant-, acidic solvent- and quaternary ammonium salt-free electrochemical para-selective hydroxylation of N-arylamides at rt in batch and continuous-flow was developed.


2021 ◽  
Vol 147 (3) ◽  
pp. 04021002
Author(s):  
Wenrui Qu ◽  
Shaojie Liu ◽  
Qun Zhao ◽  
Yi Qi

2000 ◽  
Vol 627 ◽  
Author(s):  
M. E. Swanson ◽  
M. Landreman ◽  
J. Michel ◽  
J. Kakalios

ABSTRACTWhen an initially homogeneous binary mixture of granular media such as fine and coarse sand is poured near the closed edge of a “quasi-two-dimensional” Hele-Shaw cell consisting of two vertical transparent plates held a narrow distance apart, the mixture spontaneously forms alternating segregated layers. Experimental measurements of this stratification effect are reported in order to determine which model, one which suggests that segregation only occurs when the granular material contained within a metastable heap between the critical and maximum angle of repose avalanches down the free surface, or one for which the segregation results from smaller particles becoming trapped in the top surface and being removed from the moving layer during continuous flow. The result reported here indicate that the Metastable Wedge model provides a natural explanation for the initial mixed zone which precedes the formation of the layers, while the Continuous Flow model explains the observed upward moving kink of segregated material for higher granular flux rates, and that both mechansims are necessary in order to understand the observed pairing of segregated layersfor intermediate flow rates and cell separations.


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Flow performed in microreactors offers up a number of benefits allowing reactions to be performed in a more convenient and safer manner, and even allow electrochemical reactions to take place without a supporting electrolyte due to a very short interelectrode distance. By the comparison of electrochemical oxidations in batch and flow we have found that continuous flow is able to outperform its batch counterpart, producing a good yield (71%) and a better enantiomeric excess (64%) than batch with a 98% conversion. We have, therefore, provided evidence that continuous flow chemistry has the potential to act as a new enabling technology to replace some aspects of conventional batch processes. </p>


2020 ◽  
Author(s):  
Cristian Cavedon ◽  
Eric T. Sletten ◽  
Amiera Madani ◽  
Olaf Niemeyer ◽  
Peter H. Seeberger ◽  
...  

Protecting groups are key in the synthesis of complex molecules such as carbohydrates to distinguish functional groups of similar reactivity. The harsh conditions required to cleave stable benzyl ether protective groups are not compatible with many other protective and functional groups. The mild, visible light-mediated debenzylation disclosed here renders benzyl ethers orthogonal protective groups. Key to success is the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as stoichiometric or catalytic photooxidant such that benzyl ethers can be cleaved in the presence of azides, alkenes, and alkynes. The reaction time for this transformation can be reduced from hours to minutes in continuous flow. <br>


Sign in / Sign up

Export Citation Format

Share Document