Room Temperature Flow Electrochemistry as a Means of Retaining the “Memory of Chirality” via Hofer Moest Type Reaction

Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Flow performed in microreactors offers up a number of benefits allowing reactions to be performed in a more convenient and safer manner, and even allow electrochemical reactions to take place without a supporting electrolyte due to a very short interelectrode distance. By the comparison of electrochemical oxidations in batch and flow we have found that continuous flow is able to outperform its batch counterpart, producing a good yield (71%) and a better enantiomeric excess (64%) than batch with a 98% conversion. We have, therefore, provided evidence that continuous flow chemistry has the potential to act as a new enabling technology to replace some aspects of conventional batch processes. </p>

2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Flow performed in microreactors offers up a number of benefits allowing reactions to be performed in a more convenient and safer manner, and even allow electrochemical reactions to take place without a supporting electrolyte due to a very short interelectrode distance. By the comparison of electrochemical oxidations in batch and flow we have found that continuous flow is able to outperform its batch counterpart, producing a good yield (71%) and a better enantiomeric excess (64%) than batch with a 98% conversion. We have, therefore, provided evidence that continuous flow chemistry has the potential to act as a new enabling technology to replace some aspects of conventional batch processes. </p>


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield and a higher enantiomeric excess. These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

Abstract Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an l-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield (71%) and a higher enantiomeric excess (64%). These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes.


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Compared to batch, organic electrosynthesis via microflow reactors are advantageous because they allow shorter reaction times, optimization and scale up, safer working environments, and high selectivities (e.g. reduce overoxidation). Flow electrochemical reactors also provide high surface-to-volume ratios and impart the possibility of excluding the supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we conclude that continuous flow electrolysis is superior to batch, producing a good yield and a higher enantiomeric excess. These results show that continuous flow has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


2020 ◽  
Author(s):  
Tomas Hardwick ◽  
Rossana Cicala ◽  
Nisar Ahmed

<p>Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Electrochemical methods are inherently green and environmentally benign. However, organic electrosynthesis via microflow reactor has number of advantages such as fast reaction’s time, optimization and scale up, safer environment, high selectivities and reduce chances of overoxidation. Flow electrochemical reactor provides high surface-to-volume ratio and reactions are possible to perform in the reactor without a supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we have achieved that continuous flow electrolysis is better than batch electrolysis, producing a good yield (71%) and a better enantiomeric excess (64%). These results show that continuous flow electrolysis has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes. </p>


RSC Advances ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 2276-2280 ◽  
Author(s):  
Joshua Britton ◽  
Colin L. Raston

Rapid reduction of free fatty acids in biodiesel feedstock: the rapid conversion of problematic free fatty acids in bio-oils has been achieved using room temperature, environmentally benign vortex fluidic flow chemistry.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 663
Author(s):  
Christophe Len ◽  
Renzo Luisi

Continuous flow chemistry is radically changing the way of performing chemical synthesis, and several chemical and pharmaceutical companies are now investing in this enabling technology [...]


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6992
Author(s):  
Mara Di Filippo ◽  
Marcus Baumann

Continuous flow chemistry is by now an established and valued synthesis technology regularly exploited in academic and industrial laboratories to bring about the improved preparation of a variety of molecular structures. Benefits such as better heat and mass transfer, improved process control and safety, a small equipment footprint, as well as the ability to integrate in-line analysis and purification tools into telescoped sequences are often cited when comparing flow to analogous batch processes. In this short review, the latest developments regarding the exploitation of continuous flow protocols towards the synthesis of anticancer drugs are evaluated. Our efforts focus predominately on the period of 2016–2021 and highlight key case studies where either the final active pharmaceutical ingredient (API) or its building blocks were produced continuously. It is hoped that this manuscript will serve as a useful synopsis showcasing the impact of continuous flow chemistry towards the generation of important anticancer drugs.


2016 ◽  
Vol 18 (7) ◽  
pp. 2193-2200 ◽  
Author(s):  
Joshua Britton ◽  
Stuart B. Dalziel ◽  
Colin L. Raston

Faraday wave assisted flow chemistry. Vibrations and shear stress drive the synthesis of di-esters in minutes using room temperature vortex fluidics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alessandra Puglisi ◽  
Sergio Rossi

AbstractOrganic synthesis has traditionally been performed in batch. Continuous-flow chemistry was recently rediscovered as an enabling technology to be applied to the synthesis of organic molecules. Organocatalysis is a well-established methodology, especially for the preparation of enantioenriched compounds. In this chapter we discuss the use of chiral organocatalysts in continuous flow. After the classification of the different types of catalytic reactors, in Section 2, each class will be discussed with the most recent and significant examples reported in the literature. In Section 3 we discuss homogeneous stereoselective reactions in flow, with a look at the stereoselective organophotoredox transformations in flow. This research topic is emerging as one of the most powerful method to prepare enantioenriched products with structures that would otherwise be challenging to make. Section 4 describes the use of supported organocatalysts in flow chemistry. Part of the discussion will be devoted to the choice of the support. Examples of packed-bed, monolithic and inner-wall functionalized reactors will be introduced and discussed. We hope to give an overview of the potentialities of the combination of (supported) chiral organocatalysts and flow chemistry.


Sign in / Sign up

Export Citation Format

Share Document