Corrective effect of diaphragm pacing on the decrease in cardiac output induced by positive pressure mechanical ventilation in anesthetized sheep

2017 ◽  
Vol 236 ◽  
pp. 23-28 ◽  
Author(s):  
Hicham Masmoudi ◽  
Romain Persichini ◽  
Jérôme Cecchini ◽  
Julie Delemazure ◽  
Martin Dres ◽  
...  
CHEST Journal ◽  
2007 ◽  
Vol 132 (4) ◽  
pp. 571B ◽  
Author(s):  
Raymond P. Onders ◽  
Robert Schilz ◽  
Subhalakashmi Sivashankaran ◽  
Bashar Katirji ◽  
MaryJo Elmo ◽  
...  

2021 ◽  
Vol 8 ◽  
pp. 2333794X2199153
Author(s):  
Ameer Al-Hadidi ◽  
Morta Lapkus ◽  
Patrick Karabon ◽  
Begum Akay ◽  
Paras Khandhar

Post-extubation respiratory failure requiring reintubation in a Pediatric Intensive Care Unit (PICU) results in significant morbidity. Data in the pediatric population comparing various therapeutic respiratory modalities for avoiding reintubation is lacking. Our objective was to compare therapeutic respiratory modalities following extubation from mechanical ventilation. About 491 children admitted to a single-center PICU requiring mechanical ventilation from January 2010 through December 2017 were retrospectively reviewed. Therapeutic respiratory support assisted in avoiding reintubation in the majority of patients initially extubated to room air or nasal cannula with high-flow nasal cannula (80%) or noninvasive positive pressure ventilation (100%). Patients requiring therapeutic respiratory support had longer PICU LOS (10.92 vs 6.91 days, P-value = .0357) and hospital LOS (16.43 vs 10.20 days, P-value = .0250). Therapeutic respiratory support following extubation can assist in avoiding reintubation. Those who required therapeutic respiratory support experienced a significantly longer PICU and hospital LOS. Further prospective clinical trials are warranted.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shinichiro Ohshimo

AbstractAcute respiratory distress syndrome (ARDS) is a fatal condition with insufficiently clarified etiology. Supportive care for severe hypoxemia remains the mainstay of essential interventions for ARDS. In recent years, adequate ventilation to prevent ventilator-induced lung injury (VILI) and patient self-inflicted lung injury (P-SILI) as well as lung-protective mechanical ventilation has an increasing attention in ARDS.Ventilation-perfusion mismatch may augment severe hypoxemia and inspiratory drive and consequently induce P-SILI. Respiratory drive and effort must also be carefully monitored to prevent P-SILI. Airway occlusion pressure (P0.1) and airway pressure deflection during an end-expiratory airway occlusion (Pocc) could be easy indicators to evaluate the respiratory drive and effort. Patient-ventilator dyssynchrony is a time mismatching between patient’s effort and ventilator drive. Although it is frequently unrecognized, dyssynchrony can be associated with poor clinical outcomes. Dyssynchrony includes trigger asynchrony, cycling asynchrony, and flow delivery mismatch. Ventilator-induced diaphragm dysfunction (VIDD) is a form of iatrogenic injury from inadequate use of mechanical ventilation. Excessive spontaneous breathing can lead to P-SILI, while excessive rest can lead to VIDD. Optimal balance between these two manifestations is probably associated with the etiology and severity of the underlying pulmonary disease.High-flow nasal cannula (HFNC) and non-invasive positive pressure ventilation (NPPV) are non-invasive techniques for supporting hypoxemia. While they are beneficial as respiratory supports in mild ARDS, there can be a risk of delaying needed intubation. Mechanical ventilation and ECMO are applied for more severe ARDS. However, as with HFNC/NPPV, inappropriate assessment of breathing workload potentially has a risk of delaying the timing of shifting from ventilator to ECMO. Various methods of oxygen administration in ARDS are important. However, it is also important to evaluate whether they adequately reduce the breathing workload and help to improve ARDS.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Mohammed N Al Shafi'i ◽  
Doaa M. Kamal El-din ◽  
Mohammed A. Abdulnaiem Ismaiel ◽  
Hesham M Abotiba

Abstract Background Noninvasive positive pressure ventilation (NIPPV) has been increasingly used in the management of respiratory failure in intensive care unit (ICU). Aim of the Work is to compare the efficacy and resource consumption of NIPPMV delivered through face mask against invasive mechanical ventilation (IMV) delivered by endotracheal tube in the management of patients with acute respiratory failure (ARF). Patients and Methods This prospective randomized controlled study included 78 adults with acute respiratory failure who were admitted to the intensive care unit. The enrolled patients were randomly allocated to receive either noninvasive ventilation or conventional mechanical ventilation (CMV). Results Severity of illness, measured by the simplified acute physiologic score 3 (SAPS 3), were comparable between the two patient groups with no significant difference between them. Both study groups showed a comparable steady improvement in PaO2:FiO2 values, indicating that NIPPV is as effective as CMV in improving the oxygenation of patients with ARF. The PaCO2 and pH values gradually improved in both groups during the 48 hours of ventilation. 12 hours after ventilation, NIPPMV group showed significantly more improvement in PaCO2 and pH than the CMV group. The respiratory acidosis was corrected in the NIPPV group after 24 hours of ventilation compared with 36 hours in the CMV group. NIPPV in this study was associated with a lower frequency of complications than CMV, including ventilator acquired pneumonia (VAP), sepsis, renal failure, pulmonary embolism, and pancreatitis. However, only VAP showed a statistically significant difference. Patients who underwent NIPPV in this study had lower mortality, and lower ventilation time and length of ICU stay, compared with patients on CMV. Intubation was required for less than a third of patients who initially underwent NIV. Conclusion Based on our study findings, NIPPV appears to be a potentially effective and safe therapeutic modality for managing patients with ARF.


1992 ◽  
Vol 72 (3) ◽  
pp. 977-984 ◽  
Author(s):  
G. Geelen ◽  
P. Arbeille ◽  
J. L. Saumet ◽  
J. M. Cottet-Emard ◽  
F. Patat ◽  
...  

This study examined the hemodynamic consequences of prolonged lower body positive-pressure application and their relationship to changes in the plasma concentration of the major vasoactive hormones. Six men [36 +/- 2 (SE) yr] underwent 30 min of sitting and then 3 h of 70 degrees head-up tilt. An antigravity suit was applied (60 Torr legs, 30 Torr abdomen) during the last 2 h of tilt. In a similar noninflation experiment, the endocrine responses were measured in the suited subjects tilted for 3 h. Two-dimensional echocardiography was used to calculate ventricular volume and cardiac output. Measurements were made 30 min before and 30 and 90 min after inflation. Immediately after inflation, mean arterial pressure increased by 7 +/- 2 Torr and heart rate decreased by 16 +/- 4 beats/min. Left ventricular end-diastolic volume and systolic volume increased significantly (P less than 0.05) at 30 and 90 min of inflation. Cardiac output increased after 30 min of inflation and returned to the preinflation level at 90 min. Plasma norepinephrine and plasma renin activity were maximally suppressed after 15 and 90 min of inflation, respectively (P less than 0.05). No such hormonal changes occurred during control. Plasma sodium, potassium, and osmolality remained unchanged during both experiments. Thus, prolonged application of lower body positive pressure induces 1) a transient increase in cardiac output and 2) a marked and sustained decrease in plasma norepinephrine and plasma renin activity, which reflect an inflation-induced decrease in sympathetic activity.


1987 ◽  
Vol 2 (2) ◽  
pp. 101-108 ◽  
Author(s):  
J.J. Fargier ◽  
D. Robert ◽  
F. Boyer ◽  
J. Chagny ◽  
C. Kopp ◽  
...  

PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 858-864
Author(s):  
G. Gabriele ◽  
C. R. Rosenfeld ◽  
D. E. Fixler ◽  
J. M. Wheeler

Continuous airway pressure delivered by a head-box is an accepted means of treating clinical hyaline membrane disease. To investigate hemodynamic alterations resulting from its use, eight newborn lambs, 1 to 6 days of age, were studied at 6 and 11 mm Hg of positive pressure, while spontaneously breathing room air. Organ blood flows and cardiac output were measured with 25 µ-diameter radioactive microspheres. Heart rate, left ventricular pressure, and arterial blood gases did not change during the study. Jugular venous pressures increased from 6.4 mm Hg to 18.6 and 24.2 mm Hg at 6 and 11 mm Hg, respectively (P < .005). Cardiac output decreased approximately 20% at either intrachamber pressure setting. Renal blood flow fell 21% at 11 mm Hg. No significant changes in blood flow were found in the brain, gastrointestinal tract, spleen, heart, or liver when compared to control flows. Of particular interest was the finding of a 28% reduction in ocular blood flow at 6 mm Hg and 52% at 11 mm Hg. From these results, we conclude that substantial cardiovascular alterations may occur during the application of head-box continuous airway pressure breathing, including a significant reduction in ocular blood flow.


2020 ◽  
pp. 51-63
Author(s):  
Garrett S. Pacheco

Respiratory complaints are common conditions for children to present to emergency departments. Typically, patients respond to simple supportive treatment, whether it is airway clearance therapy, oxygen therapy, or bronchodilators. When these patients are critically ill, they often require aggressive oxygenation/ventilation with noninvasive strategies, or even tracheal intubation. The use of noninvasive positive pressure ventilation has led to a significant reduction in the necessity for endotracheal intubation in children. The emergency physician should be familiar with the indications and appropriate application of these modalities. Furthermore, when patients require invasive mechanical ventilation, the emergency physician should have an understanding of initial ventilator settings, troubleshooting alarms, and an approach to the decompensating pediatric ventilated patient.


Sign in / Sign up

Export Citation Format

Share Document