Influence of fatigue–life data modelling on the estimated reliability of a structure subjected to a constant-amplitude loading

2015 ◽  
Vol 142 ◽  
pp. 238-247 ◽  
Author(s):  
Jernej Klemenc
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3398 ◽  
Author(s):  
Alberto D’Amore ◽  
Luigi Grassia

The most popular methods of characterizing a composite’s fatigue properties and predicting its life are phenomenological, meaning the micro-mechanisms of composite structures under cyclic loading are not treated. In addition, in order to characterize the fatigue properties, only macro-parameters, namely strength and/or stiffness, are adopted. Residual strength models are mostly used in practice, given their strong relationship with safety and reliability. Indeed, since failure occurs when the strength degrades to the peak stress of fatigue loading, the remaining strength is used as a failure index. In this paper, based on a wide set of literature data, we summarize the capabilities of four models, namely Caprino’s, D’Amore’s, Sendekyj’s, and Kassapoglou’s models. The models are briefly described and then applied to the same data set, which is re-elaborated. The selected experimental data are recovered from a large experimental campaign carried out by the Federal Aviation Administration (FAA). Specimens of the same material were subjected to different loading in terms of peak stress, σmax, and stress ratio, R = σmin/σmax, ranging from pure tension (0 < R < 1) to prevalent tension (−1 < R < 0) to tension-compression (R = −1) to pure compression (1 < R < ∞). The data represent a formidable test bed to comparatively evaluate the models’ capabilities and their predictive prerogatives. The models are also tested with respect to their ability to replicate the principal responses’ feature of composite materials subjected to constant amplitude (CA) loadings. It is shown that Caprino’s and D’Amore’s models are equally capable of adequately fitting the experimental fatigue life data under given loading conditions and predicting the fatigue behavior at different loading ratios, R, with two fixed parameters. Sendekyj’s model required different parameters’ sets for each loading condition, and Kassapoglou’s model was unable to fit the majority of fatigue life data. When compared on the basis of the residual strength data, only the recently developed D’Amore’s model revealed its reliability.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 81
Author(s):  
Laixin Shi ◽  
Lin Xiang ◽  
Jianquan Tao ◽  
Jun Liu ◽  
Qiang Chen ◽  
...  

Effects of actual marine atmospheric precorrosion and prefatigue on the fatigue property of 7085-T7452 aluminum alloy were investigated by using the methods of marine atmospheric outdoor exposure tests and constant amplitude axial fatigue tests. Marine atmospheric corrosion morphologies, fatigue life, and fatigue fractography were analyzed. After three months of outdoor exposure, both pitting corrosion and intergranular corrosion (IGC) occurred, while the latter was the dominant marine atmospheric corrosion mode. Marine atmospheric precorrosion could result in a dramatical decrease in the fatigue life of the as-received 7085-T7452 aluminum alloy, while selective prefatigue can improve the total fatigue life of the precorroded specimen. The mechanism of the actual marine atmospheric corrosion and its effects on the fatigue life of the 7085-T7452 aluminum alloy were also discussed.


1981 ◽  
Vol 103 (3) ◽  
pp. 223-228 ◽  
Author(s):  
A. Kantimathi ◽  
J. A. Alic

Fretting fatigue tests have been conducted on 7075-T7351 aluminum alloy coupons with fretting pads of the same material. Three different stress ratios were used, the otherwise constant amplitude axial loads being interrupted every 1000 cycles by either tensile overloads to 400 MPa or compressive underloads to −200 MPa. Tensile overloads greatly prolonged fatigue life for low stresses where the overload ratios were 1.6 and above; compressive underloads had comparatively little effect. The results are discussed in terms of crack growth retardation phenomena.


2014 ◽  
Vol 891-892 ◽  
pp. 948-954 ◽  
Author(s):  
Madeleine Burchill ◽  
Simon A. Barter ◽  
Michael Jones

It has often been observed that the growth of short fatigue cracks under variable amplitude (VA) cyclic loading is not well predicted when utilising standard constant amplitude (CA) crack growth rate/stress intensity data (da/dN v DK). This paper outlines a coupon fatigue test program and analyses, investigating a possible cause of crack growth retardation from CA-only testing. Various test loading spectra were developed with sub-blocks of VA and CA cycles, then using quantitative fractography (QF) the sub-block crack growth increments were measured. Comparison of these results found that, after establishing a consistent uniform crack front using a VA load sequence, the average crack growth rate then progressively slowed down with the number of subsequent CA load cycles applied. Further fractographic investigation of the fracture surface at the end of each CA and VA sub-block crack growth, identified significant crack front morphology differences. Thus it is postulated that a variation or deviation from an efficient crack path is a driver of local retardation in short crack growth during CA loading. This may be a source of error in analytical predictions of crack growth under VA spectra loading that may need to be considered in addition to other potential effects such asless closure whilst cracks are small. For aircraft designers, using solely CA data for fatigue life predictions this may result in non-conservative estimates of total crack fatigue life, producing unexpected failures or an increased maintenance burden.


Sign in / Sign up

Export Citation Format

Share Document