scholarly journals Risk assessment of the maintenance process for onshore oil and gas transmission pipelines under uncertainty

2018 ◽  
Vol 177 ◽  
pp. 50-67 ◽  
Author(s):  
Xuchao Yu ◽  
Wei Liang ◽  
Laibin Zhang ◽  
Genserik Reniers ◽  
Linlin Lu
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Amir Farmahini Farahani ◽  
Kaveh Khalili-Damghani ◽  
Hosein Didehkhani ◽  
Amir Homayoun Sarfaraz ◽  
Mehdi Hajirezaie

Author(s):  
Wenxing Feng ◽  
Xiaoqiang Xiang ◽  
Guangming Jia ◽  
Lianshuang Dai ◽  
Yulei Gu ◽  
...  

The oil and gas pipeline companies in China are facing unprecedented opportunities and challenges because of China’s increasing demand for oil and gas energy that is attributed to rapid economic and social development. Limitation of land resource and the fast urbanization lead to a determinate result that many pipelines have to go through or be adjacent to highly populated areas such as cities or towns. The increasing Chinese government regulation, and public concerns about industrial safety and environmental protection push the pipeline companies to enhance the safety, health and environmental protection management. In recent years, PetroChina Pipeline Company (PPC) pays a lot of attention and effort to improve employees and public safety around the pipeline facilities. A comprehensive, integrated HSE management system is continuously improved and effectively implemented in PPC. PPC conducts hazard identification, risk assessment, risk control and mitigation, risk monitoring. For the oil and gas stations in highly populated area or with numerous employees, PPC carries out quantitative risk assessment (QRA) to evaluate and manage the population risk. To make the assessment, “Guidelines for quantitative risk assessments” (purple book) published by Committee for the Prevention of Disasters of Netherlands is used along with a software package. The basic principles, process, and methods of QRA technology are introduced in this article. The process is to identify the station hazards, determinate the failure scenarios of the facilities, estimate the possibilities of leakage failures, calculate the consequences of failures and damages to population, demonstrate the individual risk and social risk, and evaluate whether the risk is acceptable. The process may involve the mathematical modeling of fluid and gas spill, dispersion, fire and explosion. One QRA case in an oil pipeline station is described in this article to illustrate the application process and discuss several key issues in the assessment. Using QRA technique, about 20 stations have been evaluated in PPC. On the basis of the results, managers have taken prevention and mitigation plans to control the risk. QRAs in the pipeline station can provide a quantitative basis and valuable reference for the company’s decision-making and land use planning. Also, QRA can play a role to make a better relationship between the pipeline companies and the local regulator and public. Finally, this article delivers limitations of QRA in Chinese pipeline stations and discusses issues of the solutions.


2021 ◽  
Author(s):  
Francois Ayello ◽  
Guanlan Liu ◽  
Yonghe Yang ◽  
Ning Cui

Author(s):  
Lisa M. Gieg ◽  
Mohita Sharma ◽  
Trevor Place ◽  
Jennifer Sargent ◽  
Yin Shen

Abstract Corrosion of carbon steel infrastructure in the oil and gas industry can occur via a variety of chemical, physical, and/or microbiological mechanisms. Although microbial corrosion is known to lead to infrastructure failure in many upstream and downstream operations, predicting when and how microorganisms attack metal surfaces remains a challenge. In crude oil transmission pipelines, a kind of aggressive corrosion known as under deposit corrosion (UDC) can occur, wherein mixtures of solids (sands, clays, inorganic minerals), water, oily hydrocarbons, and microorganisms form discreet, (bio)corrosive sludges on the metal surface. To prevent UDC, operators will use physical cleaning methods (e.g., pigging) combined with chemical treatments such as biocides, corrosion inhibitors, and/or biodispersants. As such, it necessary to evaluate the efficacy of these treatments in preventing UDC by monitoring the sludge characteristics and the microorganisms that are potentially involved in the corrosion process. The efficacies of a biocide, corrosion inhibitor, and biodispersant being used to prevent microbial corrosion in a crude oil transmission pipeline were evaluated. A combination of various microbiological analyses and corrosivity tests were performed using sludge samples collected during pigging operations. The results indicated that the combined treatment using inhibitor, biocide 1 and biodispersant was the most effective in preventing metal damage, and both growth-based and Next-Generation Sequencing approaches provided value towards understanding the effects of the chemical treatments. The efficacy of a different biocide (#2) could be discriminated using these test methods. The results of this study demonstrate the importance of considering and monitoring for microbial corrosion of crucial metal infrastructure in the oil and gas industry, and the value of combining multiple lines of evidence to evaluate the performance of different chemical treatment scenarios.


Sign in / Sign up

Export Citation Format

Share Document