Applying the Quantitative Risk Assessment (QRA) to Improve Safety Management of Oil and Gas Pipeline Stations in China

Author(s):  
Wenxing Feng ◽  
Xiaoqiang Xiang ◽  
Guangming Jia ◽  
Lianshuang Dai ◽  
Yulei Gu ◽  
...  

The oil and gas pipeline companies in China are facing unprecedented opportunities and challenges because of China’s increasing demand for oil and gas energy that is attributed to rapid economic and social development. Limitation of land resource and the fast urbanization lead to a determinate result that many pipelines have to go through or be adjacent to highly populated areas such as cities or towns. The increasing Chinese government regulation, and public concerns about industrial safety and environmental protection push the pipeline companies to enhance the safety, health and environmental protection management. In recent years, PetroChina Pipeline Company (PPC) pays a lot of attention and effort to improve employees and public safety around the pipeline facilities. A comprehensive, integrated HSE management system is continuously improved and effectively implemented in PPC. PPC conducts hazard identification, risk assessment, risk control and mitigation, risk monitoring. For the oil and gas stations in highly populated area or with numerous employees, PPC carries out quantitative risk assessment (QRA) to evaluate and manage the population risk. To make the assessment, “Guidelines for quantitative risk assessments” (purple book) published by Committee for the Prevention of Disasters of Netherlands is used along with a software package. The basic principles, process, and methods of QRA technology are introduced in this article. The process is to identify the station hazards, determinate the failure scenarios of the facilities, estimate the possibilities of leakage failures, calculate the consequences of failures and damages to population, demonstrate the individual risk and social risk, and evaluate whether the risk is acceptable. The process may involve the mathematical modeling of fluid and gas spill, dispersion, fire and explosion. One QRA case in an oil pipeline station is described in this article to illustrate the application process and discuss several key issues in the assessment. Using QRA technique, about 20 stations have been evaluated in PPC. On the basis of the results, managers have taken prevention and mitigation plans to control the risk. QRAs in the pipeline station can provide a quantitative basis and valuable reference for the company’s decision-making and land use planning. Also, QRA can play a role to make a better relationship between the pipeline companies and the local regulator and public. Finally, this article delivers limitations of QRA in Chinese pipeline stations and discusses issues of the solutions.

Author(s):  
Aleksandra Sukhova ◽  
Elena Elizareva

Objective: Identifying an accurate quantitative risk assessment. FEC (Fuel and Energy Complex) plants are a high-risk area as they may cause manmade disasters, various accidents, pose a threat to human life and environment. In addition, the Russian energy industry is noted for its high complexity and social responsibility. Its specific feature is that it is not always possible to make an accurate quantitative risk assessment reasonably in advance and its degree determination methods are not well enough developed. In view of the above, there are some difficulties in minimizing the risks and estimating risk management costs. There has been a recent trend in improved current legislation on industrial safety and Rostechnadzor (Federal Environmental, Industrial and Nuclear Supervision Service of Russia) oversight and supervision activity practice toward implementing a risk-based approach using the risk analysis methods. It allows optimizing the methods and frequency of inspections made by regulatory bodies depending on the risk level of facilities supervised. Methods: The (accident) risk analysis is performed as a certain scientific justification set forth using qualitative and quantitative analysis of a potential accident likelihood, consequences of its occurrence, and identification of the weakest points in the engineering system or complex. Using fault tree analysis, this article identifies hazards and assesses the high-pressure gas pipeline loss of containment risk, one of the events possible for an energy provider in operation. Results: Based on the risk analysis, there has been a proposal to replace gland seal valves with bellows seal valves noted for their optimum relationship between the unit reliability, cost and sophistication level. In case the facilities with gland seal valves remain in operation, improved production process monitoring is recommended using gas leak detectors and automatic interlocking devices. Practical importance: The measures proposed will allow minimizing the gas pipeline loss of containment risk.


Author(s):  
A. Dinovitzer ◽  
G. Comfort ◽  
R. Lazor ◽  
D. Hinnah

While offshore arctic pipelines have been under consideration for more than 25 years, few have been built. Renewed interest in offshore arctic oil and gas has necessitated the design of pipelines capable of both overcoming the technical challenges of the arctic offshore environment and minimizing the risk to it. This paper describes a quantitative risk assessment completed by BMT Fleet Technology Limited on the risk of an oil spill for several design alternatives of the proposed Liberty Pipeline that would be used to transport oil onshore from a production site in the Alaskan Beaufort Sea. For the purposes of the study, risk was defined as the volume of oil expected to be released over the planned pipeline 20-year life. The investigation considered the risks associated with ice gouging, strudel scour, permafrost thaw subsidence, operational failures, corrosion, third party activities and thermal loads leading to upheaval buckling. Event probabilities for these hazards were established through the development of event trees used to combine historic operational failure statistics and those estimated through engineering analysis. A pipeline leakage consequence model was developed to quantify the oil volume released during pipeline failure events associated with rupture, through-wall cracking and pinhole leaks. The model considered secondary containment and the expected performance of leak detection and monitoring systems. The time to leak detection, shut down, and line evacuation were used in estimating the total spill volumes. The paper provides an overview of primary elements of the risk assessment including the hazard identification, reliability analysis and consequence modeling, and describes the challenges involved in this comparative risk analysis completed for this unique environment.


Author(s):  
A.M. Sverchkov ◽  

It is proposed to use the new approach to assessing quantitative risk indicators. This approach allows to consider the temporal non-stationarity of the number of processes, including the development of an accident and the spatial movements of people. The greatest uncertainty in the risk analysis with an explosive and fire hazard component is not the frequency of initiating events used, but, for example, data on the probability of ignition. The range of variation of this probability is about two orders of magnitude (relatively speaking, from 1 % to 100 %), and the criteria and factors that determine the choice of this value are not always clearly defined. The paper proposes an approach that considers the probability of ignition as a dependence on the time that passed after the start of emergency depressurization. Knowing this dependence, it is possible to consider several scenarios with different ignition time after the start of the release and assign certain consequences and probabilities to each scenario. Moreover, it is possible for each single scenario on a specific piece of equipment (pipeline section) to obtain non-stationary, namely time-varying potential risk fields. The example of an accident on the oil pipeline is considered, the risk indicators of such an accident are calculated, it is shown that the risks can change over time, namely they are non-stationary characteristics. Further, this fact is transformed into the development of theoretical foundations for quantitative risk assessment, considering the non-stationarity of various processes occurring during emergency situations arising during the operation of equipment, individual behavior of people and changes in external conditions. The results obtained show the importance of considering the changes that occur during an emergency on the main oil and product pipelines. It is concluded that the proposed approach allows to reduce the conservatism of assessments provided by traditional methods. In real practice this approach can reasonably reduce the risk indicators by several times, sometimes by orders of magnitude.


2021 ◽  
Vol 13 (22) ◽  
pp. 4496
Author(s):  
Shuai Zhang ◽  
Yunhong Lv ◽  
Haiben Yang ◽  
Yingyue Han ◽  
Jingyu Peng ◽  
...  

Landfills are the dominant method of municipal solid waste (MSW) disposal in many developing countries, which are extremely susceptible to failure under circumstances of high pore water pressure and insufficient compaction. Catastrophic landfill failures have occurred worldwide, causing large numbers of fatalities. Tianziling landfill, one of the largest engineered sanitary landfills in China, has experienced massive deformation since January 2020, making early identification and monitoring of great significance for the purpose of risk management. The human risk posed by potential landfill failures also needs to be quantitatively evaluated. The interferometric synthetic aperture radar (InSAR) technique, unmanned aerial vehicle (UAV) photogrammetry, and ground measurements were combined to obtain landfill deformation data in this study. The integrated satellite–UAV–ground survey (ISUGS) approach ensures a comprehensive understanding of landfill deformation and evolution. The deformation characteristics obtained using the InSAR technique and UAV photogrammetry were analyzed and compared. A close relationship between the most severe mobility events, precipitation episodes, and was observed. Based on early hazard identification using ISUGS, a quantitative risk assessment (QRA) method and F-N curves were proposed, which can be applied to landfills. The comparison showed that ISUGS allowed a better understanding of the spatial and temporal evolution of the landfill and more accurate QRA results, which could be as references for local governments to take effective precautions.


2021 ◽  
Author(s):  
Jiaqiang Jing ◽  
Wenlu Wang ◽  
Dongrong Wu ◽  
Jinhua Luo ◽  
Shuang Zeng ◽  
...  

Abstract When the operation benefit of an oil and gas pipeline is not enough to cover its operation cost, and the pipeline is no alternative use, seriously damaged, aged or the operation risk exceeds the acceptable range, it is bound to cause serious safety and environmental hazards along the pipeline, especially for the over age pipeline in service, therefore its scientific abandonment and reasonable disposal is particularly important and urgent. Focused on the methods for judging abandonment, retirement modes, cleaning and environmental management of oil and gas pipelines, the characteristics of existing methods for predicting the remaining life of the pipelines and their application in abandonment and disposal are compared and analyzed, and the basis and adaptability of oil and gas pipelines retirement are illuminated. According to the actual situation and environment of the discarded pipelines, the selection basis and applicable conditions of the pipeline and facility disposal methods such as demolition, in-situ shelving and their combination are expounded. It is found that North America has rich experience and mature technology in oil and gas pipeline abandonment and disposal, but many countries, including China, seriously lack scientific and systematic evaluation standards, practical experience, related theoretical and technical investigations. This study has important reference and practical significance for promoting the development of abandonment and disposal technology of an aging oil and gas pipeline, and ensuring the personal safety and ecological environmental protection along the abandoned pipeline. This paper presents the status quo of over age service and abandonment decision-making of oil and gas pipelines in the world, draws lessons from the experience of safety and environmental protection disposal of the global abandoned pipelines, and puts forward the principle and method of abandonment judgment and scientific disposal of the aging pipelines based on residual life evaluation. This method has sufficient basis, strong adaptability and wide application.


1993 ◽  
Vol 56 (12) ◽  
pp. 1043-1050 ◽  
Author(s):  
JOAN B. ROSE ◽  
MARK D. SOBSEY

Human pathogenic viruses have been detected from approved shellfish harvesting waters based on the fecal coliform indicator. Until recently it was difficult to assess viral contamination and the potential impact on public health. Risk assessment is a valuable tool which can be used to estimate adverse effects associated with microbial hazards. This report describes the use of quantitative risk assessment for evaluating potential human health impacts associated with exposure to viral contamination of shellfish. The four fundamental steps used in a formal risk assessment are described within and include i) Hazard identification, ii) Dose-response determination, iii) Exposure assessment, and iv) Risk characterization. Dose-response models developed from human feeding studies were used to evaluate the risk of infection from contaminated shellfish. Of 58 pooled samples, 19% were found to be positive for viruses. Using an echovirus-12 probability model, the individual risk was determined for consumption of 60 g of raw shellfish. Individual risks ranged from 2.2 × 10−4 to 3.5 × 10−2. These data suggest that individuals consuming raw shellfish from approved waters in the United States may have on the average a 1 in 100 chance of becoming infected with an enteric virus. Using the rotavirus model which represents a more infectious virus, the risk rose to 5 in 10. The potential for use of a risk assessment approach for developing priorities and strategies for control of disease is immense. Epidemiological data have demonstrated the significance of shellfish-associated viral disease and, although limited, appropriate virus occurrence data are available. Additional information on virus occurrence and exposure is needed, and then scientific risk assessment can be used to better assure the safety of seafood.


2021 ◽  
Vol 781 (2) ◽  
pp. 022108
Author(s):  
Shaodong Jing ◽  
Ruhua Sun ◽  
Xin Zhang ◽  
Xiaoqian Li ◽  
Siyu Wang

Author(s):  
Zhifeng Yu ◽  
Xuejun Wang

To meet the increasing energy demand, oil and gas pipelines from Myanmar to China have been planned since 2003. After 10 years’ hard work, Myanmar-China Oil and Gas Pipeline Project had been completed by the end of 2013. The project comprises one gas pipeline and one oil pipeline. The gas pipeline with a diameter of 1016 mm and a total length of 1727 km runs through great mountain areas in the southwest of China. The oil pipeline with a diameter of 813 mm and the first phase length of 606 km is laid parallel to the gas pipeline. The challenges of this project are long distant parallel large pipelines, undulant topography with high different elevation, complicated geological condition, vulnerable ecology, etc. This paper presents some design and construction issues concerned in the project, including the route selection in mountain areas, type of crossings and its design, type of ground movements and its design, special construction methods in these areas, etc. New technologies such as GIS-based route optimization, strain-based design, longspan suspension bridges, tunnels through mountains, multiple pipelines laid in narrow or steep areas and monitoring system for seismic and fault movement had been applied to conquer the challenges.


Sign in / Sign up

Export Citation Format

Share Document